

11611ETIOS min
OPERATORS

GUIDO

SlijIliltiCS
a subsidiary of U.S. Philips Corporation

Signetics Corporation
P.O. Box 9052

811 East Arques Avenue
Sunnyvale, California 94086

Telephone 408/739-7700

Signetics Corporation reserves the right to make changes in the products described in this publication in order to improve design or performance

REVISION 	 DESCR IPTION
A
	

Total Revision to SDOS 3.0 Level 3-1-79

B 	Corrections 6-1-80

TW09003000

REVISION RECORD

Signetics TWIN Operator's Guide Address comments concerning
this manual to:

C)1979
Signetics Corporation
Printed in the United States of America

Applications Department
MOS Microprocessors
Signetics Corporation
811 E. Arques Avenue
Sunnyvale, California 94086

CONTENTS

Chapter 	 Title 	 Page

1 	THE TWIN SYSTEM 	1-1
1.0 	Introduction 	1-1
1.1 	TWIN Overview 	1-1
1.2 	About This Book 	1-5
1.3 	Manual Content 	1-5

2
	

SYSTEM DESCRIPTION
	

2-1
2.0 	Introduction

	
2-1

2.1 	Hardware
	

2-1

	

2.1.1 	TWIN Development Computer
	

2-1

	

2.1.2 	Dual Floppy Disk Subsystem
	

2-3
2.2 Peripherals 	 2-4

	

2.2.1 	CRT Terminal
	

2-4

	

2.2.2 	ASR-33 Teletypewriter
	

2-4

	

2.2.3 	Line Printer
	

2-4

	

2.2.4 	User-Supplied Peripherals
	

2-4
2.3 	Software

	
2-6

	

2.3.1 	SDOS
	

2-6

	

2.3.2 	The Debug Monitor
	

2-6

	

2.3.3 	PROM Programming
	

2-6

	

2.3.4 	The Editor
	7_7

	

2.3.5 	The Assemblers 	2-7

	

2.3.6 	Systems Readiness Test 	2-7

3
	

SYSTEM OPERATION 	
3.0
	

Introduction
3.1
	

Unpacking

	

3.1.1
	

Unpacking the TWIN Development Computer

	

3.1.2
	

Unpacking the CRT Terminal 	

	

3.1.3
	

Unpacking the Floppy Disk Unit 	

	

3.1.4
	

Unpacking the Line Printer 	

	

3.1.5
	

Installing the TWICE Debug Cable 	
3.2 	Interconnection and Physical Installation 	

	

3.2.1 	Power Requirements 	
3.2.2 Interconnection 	

3.3 	System Controls and Indicators 	

	

3.3.1 	Development Computer 	

	

3.3.2 	Dual Floppy Disk Unit

	

3.3.3 	CRT Terminal 	
3.3.4 Printer 	

	

3.4 Operation 	

	

3.4.1 	Manual Reset 	

4
	

SIGNETICS DISK OPERATING SYSTEM 	4-1
4.0 	Introduction 	4-1
4.1 	System Description 	4-1

	

4.1.1 	Resident SDOS 	4-1

	

4.1.2 	SDOS Overlays 	4-2

3-1
3-1
3-1
3-1
3-1
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-9
3-9
3-9
3-9
3-11

Chapter 	 Title. 	 Page

4.1.3 	System Slave Jobs 	4-3
4.1.4 	Debug Utility Programs 	4-3

4.2 	File Management and Diskettes 	4-3
4.2.1 	Files, Devices, and Channels 	4-4
4.2.2 	File NaMes 	4-6
4.2.3 	File Directories 	4-7

4.3 	Entering SDOS Commands 	4-7
4.3.1 	Command Description 	4-7
4.3.2 	Command Completion 	4-9
4.3.3 	Error Reporting 	4-9

4.4 	Special Keys 	4-12
4.4.1 	Space Bar 	4-13
4.4.2 	ESC Key 	4-14
4.4.3 	Control - Z 	4-16
4.4.4 	Rub Out Key 	4-17

4.5 	System Control Commands 	4-18
4.5.1 SUSPEND 	 4-19
4.5.2 	CONT 	4-20
4.5.3 ABORT 	 4-21

4.6 	System Options 	4-22
4.6.1 	SYSTEM 	4-23
4.6.2 	DEVICE 	4-24
4.6.3 ICE 	 4-25
4.6.4 	ASSIGN 	4-26
4.6.5 CLOSE 	 4-27

4.7 	Diskette and File Utilities 	4-28
4.7.1 	FORMAT 	4-29
4.7.2 	VERIFY 	4-31
4.7.3 DUP 	 4-32
4.7.4 	LDIR 	4-34
4.7.5 	RENAME 	4-35
4.7.6 	COPY 	4-37
4.7.7 	PRINT and PRINTL 	4-38
4.7.8 	DELETE 	4-39
4.7.9 	CMPF 	4-40
4.7.10 DFIL 	4-43

4.8 	System Utility Commands 	4-46
4.8.1 	MOVE 	4-47
4.8.2 	FILL 	4-48
4.8.3 	READ 	4-49
4.8.4 WRITE 	 4-51
4.8.5 UPR 	 4-54

4.9 	Object Program Utilities 	4-55
4.9.1 	WHEX 	4-56
4.9.2 	RHEX 	4-57
4.9.3 	MODULE 	4-58
4.9.4 	WSMS 	4-59
4.9.5 	CSMS 	4-60

4.10 Command Files 	4-61
4.10.1 Command Description 	4-63

xi

Chapter 	 Title 	 Page

4.10.2 * [Comment] 	4-64
4.10.3 KILL 	4-65
4.10.4 TYPE 	4-66

4.11 Standard SDOS Command and Utility Files 	4-67
4.11.1 COPYSYS 	 4-68
4.11.2 Configure Optional Drivers 	4-69
4.11.3 EQUATES 	 4-71

5 	THE TEXT EDITOR 	5-1
5.0 	Introduction 	5-1
5.1 	The EDIT Command 	5-2
5.2 	Sample EDIT Session 	5-4
5.3 	Editor Command Descriptions 	5-14

5.3.1 	Editor Command Line 	5-14
5.3.2 	Editor Command Description Conventions 	5-15
5.3.3 Insertion 	 5-17
5.3.4 	Deletion 	5-19
5.3.5 	Alteration 	5-20
5.3.6 	String Search 	5-23
5.3.7 	I/O Commands 	5-24
5.3.8 	Line Pointer Commands 	5-28
5.3.9 	Utility Commands 	5-29
5.3.10 Macros 	5-35

5.4 	Editor Messages 	5-36

6 	THE ABSOLUTE ASSEMBLER 	6-1
6.0 	Introduction 	6-1
6.1 	Pre-Assembly Tasks 	6-1
6.2 	The ASM Command 	6-2
6.3 	Post-Assembly Tasks 	6-5
6.4 	Assembler Errors 	6-6
6.5 	Loading an Assembled Program 	6-7
6.6 	The Assembler Tab Feature 	6-7

7 	THE PROM PROGRAMMER 	7-1
7.0 	Introduction 	7-1
7.1 	On Board TWIN PROM Programming 	7-1

7.1.1 RPROM 	 7-3
7.1.2 WPROM 	 7-4
7.1.3 CPROM 	 7-6

7.2 	Universa] PROM Programming Interface 	7-7
7.2.1 	PROM 	7-10

8 	THE DEBUGGER 	8-1
8.0 	Introduction 	8-1
8.1 	The Debug Package 	8-2
8.2 	The Debug Command 	8-5
8.3 	Sample Debug Session 	8-6
8.4 	Debug SDOS Commands 	8-13

8.4.1 	GO 	8-14

xii

Chapter 	 Title 	 Page

8.4.2 	LOAD 	8-15
8.4.3 XEQ 	 8-16
8.4.4 	DUMP 	8-17
8.4.5 	EXAM 	8-19
8.4.6 PATCH 	 8-21
8.4.7 	STATUS 	8-22

	

8.5 	Debug Commands 	8-23
8.5.1 	BKPT 	8-24
8.5.2 	CLBP 	8-25
8.5.3 RESET 	 8-26
8.5.4 SET 	 8-27
8.5.5 DSTAT 	 8-29
8.5.6 TRACE 	 8-31

	

8.6 	TWICE Debug Cable 	8-34

APPENDICES

Figure

Title 	 Page

SDOS and DEBUG COMMAND SUMMARY 	A-1

TEXT EDITOR COMMAND SUMMARY 	B-1

HEXADECIMAL OBJECT FORMAT 	C-1

SMS TAPE FORMAT 	D-1

SYSTEM READINESS TEST 	E-1

TWIN SUPERVISOR CALLS 	F-1

SRB STATUS CODES 	G-1

ADDING A DEVICE DRIVER TO SDOS 	H-1

RS232 DRIVER DESCRIPTION 	I-1

FIGURES

Title 	 Page

Appendix

A

B

C

D

E

F

G

H

1-1 	Elementary Partitioning of 2650
Microcomputer System Logic

	
1-3

1-2 	TWIN Slave CPU Emulates User's System CPU
	

1-4

2-1 	Diskette 	2-5

Figure 	 Title 	 Page

3-1 	Development Computer PC Board Layout 	3-2
3-2 	Development Computer (Top View) 	3-3
3-3 	Computer Front Panel 	3-6
3-4 	Computer Rear Panel 	3-8
3-5 	Inserting a Diskette 	3-10

4-1 	Equates File 	4-71

5-1 	EDIT Sample-Double Precision Add 	5-4
5-2 	Entering Text and Displaying the Buffer 	5-5
5-3 	FIND, SUBSTITUTE and REPLACE Commands 	5-7
5-4 	Displaying the Buffer and Filing 	5-8
5-5 	EDIT Sample Double Precision Add and Subtract 	5-9
5-6 	Adding data to an Existing File 	5-11
5-7 	Inserting Lines into the Buffer 	5-13

6-1 	Sample Program 	6-3
6-2 	Absolute Assembler Output 	6-4

7-1 	TWIN Data I/O Interconnection Cable 	7-9
7-2 	Sample Session - Universal PROM Programmer 	7-13

8-1 	Sample Program To Debug 	8-7
8-2 	Sample Debug Session 	8-10

E-1 	System Readiness Test 	E-2

H-1 	Adding a Driver to SDOS Sample 	H-3

1-1 	RS232 Control Port 1 (Output) 	1-2

1-2 	RS232 Control Port 1 (Input) 	 1-3

1-3 	RS232 Control Port 2 (Input Only) 	1-3

1-4 	SRB Usage for Read Status SVC (21H) 	1-6

TABLES

Table 	 Title 	 Page

4-1A 	Reserved Device Names 	4-5
4-1B 	Optional Device Names 	4-5
4-2 	SDOS System Program Identifiers 	4-10
4-3 	SDOS Error Messages 	4-11
4-4 	ESC Key Usage With SDOS Commands 	4-15

7-1 	PROM Socket Usage 	7-1

xiv

Table

7-2

Title

PROM Programming Retries

Page

7-5

8-1 	Commands Available in Debug 	8-3
8-2 	TRACE Display Form,at 	8-33

F-1 	SVC References 	F-1
F-2 	Contents of the Service Request Block 	F-2
F-3 	SVC Function Codes (Hexadecimal) 	F-4
F-4 	Device Identification and Type 	F-12
F-5 	Device Type Code 	F-12

xv

CHAPTER 1

THE TWIN SYSTEM

1.0 INTRODUCTION

When designing any product that includes a microprocessor, there are aspects
of the development cycle which have no parallel either in combinatorial logic
design or in computer program development - the two predecessors of micro-
processor product development.

There is no clear-cut demarcation between logic which should be implemented
using digital logic packages or logic which should be implemented using pro-
grammed instructions; that is what makes microporcessor product development
unique. A successful microprocessor development system, such as TWIN, must
therefore support digital logic development and object program creation with
equal ease. Therein lies the strength of the TWIN system.

1.1 TWIN OVERVIEW

TWIN may at first look like any other general purpose minicomputer system;
there is a CRT and keyboard which communicates with a box that resembles a
minicomputer. Results may be created on a line printer and intermediate data
or programs may be stored on diskettes.

Indeed, TWIN offers many of the program creation and execution facilities that
any general purpose minicomputer system will offer. Source programs, written
in assembly language, may be entered via the CRT terminal and stored on disk-
ette. Subsequently, source programs may be retrieved from diskette, edited
and stored back. An Assembler converts source programs into executable object
code and a Debugger allows the object code to be conditionally executed as a
means of detecting conceptual errors -- that is, instruction sequences which,
though they are syntactically correct, do not accurately represent the in-
tended logic or data flows.

The entire process of program creation and correction makes heavy use of the
bulk data storage capability of diskettes. Therefore, a disk operating system
is provided to automate the process of accessing diskette files by identifying
file labels rather than diskette track and sector addresses.

1-1

All of the TWIN program creation and execution features are comparable to any
general purpose minicomputer system. So complete is this parallel, that there
would be nothing preventing TWIN from being used like any other mini-computer
system -- as a text editor or even a business machine. User-written programs
may access diskettes via the disk operating system; indeed the disk operating
system could be included as a utility within a large user-written program.

But TWIN is much more than a general purpose minicomputer system. The typical
2650 user program created on TWIN is subsequently going to become an object
program, implemented in PROM or ROM. A microprocessor object program is
therefore ultimately to become a package, driving 2650-based logic, in a con-
figuration that may not even remotely resemble a computer. The only constant
that may be ascribed to 2650 based products is that they will contain a Sig-
netics 2650 microprocessor, driven by one or more object program packages;
additional logic must be present to handle the flow of data or signals to or
from the microprocessor. Figure 1-1 therefore generally identifies the ulti-
mate configuration which any microprocessor-based product will have.

Every part of the end product illustrated in Figure 1-1 may be developed using
TWIN.

The process of creating an executable object program was described first,
since this is the most obvious capability of a configuration that looks like a
general purpose minicomputer system. But the similarities between TWIN and a
general purpose minicomputer system end at this superficial level.

Consider some of the additional features which TWIN provides to serve as a
total microprocessor based product development aid.

To begin with, object programs are likely to be stored in PROM or ROM de-
vices. TWIN allows you to create the PROM, or to define the ROM mask.

The TWIN provides two CPUs. A master CPU performs monitoring and disk operat-
ing system functions; functions required by TWIN, but absent in the product
being developed. A slave microprocessor takes the place of the 2650 device
which must be present in the end product.

Memory is also provided in duplicate. The master CPU has its own memory, out
of which it can execute monitoring and disk operating system programs. The
slave CPU has separate memory which remains available for user application
programs. This is illustrated in Figure 1-2. When appropriate, TWIN allows
the master CPU to access slave processor memory. The separation of programs
between master and slave memories is not exactly a "system" versus "user"
division, but that is of little concern to you as the TWIN user.

1-2

OBJECT PROGRAMS

IN ROM OR PROM

1
SYSTEM BUS

1

INTERFACE LOGIC FOR
SIGNALS AND DATA EXCHANGE

TO OUTSIDE WORLD

2650
CPU

Figure 1-1. Elementary Partitioning of 2650 Microcomputer System Logic

1-3

t
.

Wn=}7==M2RMT1111

TWIN's simulation of I/O logic remains to be described. The problem with this
additional logic is that it is completely undefinable. Not only is it impos-
sible to say how far such logic migrates into an end product, it is equally
hard to determine, in advance, those functions which will end up as program
steps in PROM or ROM as opposed to digital logic packages. TWIN resolves the
open-endedness of this additional logic by providing the TWICE cable; any
external logic may communicate with the slave microporcessor and its slave
memory via the TWICE cable. Moreovef-, external logic beyond the TWICE cable
may, itself, contain program memory. Referring to Figure 1-2, the logic
shaded "user system" communicates with the TWIN system via the TWICE cable.

Thus, TWIN becomes a total microprocessor-based product development system.
Every aspect of a 2650-based product may be simulated and designed using
TWIN. By the time product development is complete, the TWIN user may be cer-
tain that no surprises remain. PROMs or ROMs contain object programs which,
while being created, were executed by a microprocessor which is identical to
the end product microprocessor. While object programs were executed by TWIN,
during their creation, they interacted via the TWICE cable with additional
logic which, package-for-package, will be identical to the eventual end pro-
duct. Therefore, when going from TWIN emulation to end product, the only
changes will be in physical fabrication.

1.2 ABOUT THIS BOOK

This book is a TWIN Operator's Guide. 	As such, it describes all aspects of
TWIN system operation, from unpacking, through switches and indicators, to the
use of the various system development programs.

Additionally, there is a TWIN System Reference Manual, document number
TWO9004000, which provides a detailed hardware description of the TWIN system
and its various components.

A Maintenance Manual, document number TW09006000, helps the user locate and
fix malfunctions in the TWIN system, and provides detailed logic diagrams.

The 2650 TWIN Assembly Language Manual, document number TWO9005000, describes
the 2650 assembly language and the way it should be used to create assembly
language source programs.

The Signetics 2650 Microprocessor Manual, document number 2650BM1000,
describes the hardware and interfacing aspects of the 2650 and provides
detailed explanations of its instruction set.

1.3 MANUAL CONTENT

Chapter 2 of this manual describes system hardware in general terms, and gives
an overview of system software. Chapter 3 describes unpacking, installation
and initial operation. Chapter 4 gives details of the Signetics Disk Operat-
ing System and describes procedures for using it. Chapter 5 describes the
Text Editor and gives procedures for using the Editor to create and modify
files. Chapter 6 describes the Absolute Assembler and how it is used to

1-5

create object programs from assembly language programs. Chapter 7 gives

procedures for programming PROMs from assembled user programs. Chapter 8
describes the capabilities of the TWIN debug system.

1-6

CHAPTER 2

SYSTEM DESCRIPTION

2.0 INTRODUCTION

This chapter outlines system configuration, peripherals, and software provided
with the system.

2.1 HARDWARE

The TWIN is a complete microprocessor development system based on the Sig-
netics 2650 microprocessor. This system is used to create and edit assembly
language source programs. User's object programs may be executed out of TWIN
memory, or object programs may be executed out of external memory that is part
of an end product by using the TWICE interconnecting cable assembly. Thus
TWIN can simulate an end product, or interface directly to it; therefore, TWIN
has the ability to support every phase of product development. A TWIN system
consists of a development computer with 16K bytes of master memory, from 16K
to 32K bytes of slave memory with a 2650 slave CPU, and a dual drive floppy
disk unit. Peripherals include a CRT terminal and a line printer. Options
available include an additional floppy disk unit, PROM programmers, and gen-
eral purpose I/O cards. The computer, disk unit, terminal, and line printer
are all desk-top units and are self-contained.

2.1.1 TWIN Development Computer

The development computer consists of a mainframe enclosure and printed circuit
board subsystems to implement development functions. The following describes
major functions of the development computer hardware.

MASTER AND SLAVE CPU

The TWIN operating system runs in a master CPU which is the Signetics 2650.
The Editor, Assemblers and user programs run in the slave CPU.

At any point in time, only one CPU within the TWIN system can be active and
executing instructions. The master CPU is responsible for determining which
CPU is active. The master CPU determines the slave CPU state via a series of
control lines which are master CPU interrupts.

2-1

PARTITIONED I/O

The master CPU handles all I/O communication with system peripherals. Pro-
grams executed by the slave CPU communicate with system peripherals via the
master CPU by issuing requests to the master CPU for their system I/O. This
is done through supervisor calls, SVCs, from the slave to the master. SVCs
are discussed in Appendix F.

There is separate interface logic available only to the slave CPU. Using this
logic, the user can add interface boards for development-oriented peripherals,
allowing the slave CPU to communicate with its own peripheral units directly.
Thus, programs under development can be executed in a hardware environment
nearly identical to that of the user's final product.

DUAL MEMORIES

The system includes two separate memories: one is the slave memory of up to

64K bytes.* This memory is accessible by both master and slave CPUs. Three
system programs, the Editor and the Assemblers, plus a small debug utility
program package, are executed out of the slave memory by the slave CPU. User
development programs are also run under the slave CPU in this memory.

The other memory is the master memory in which the operating system and the
debug monitor run under the master CPU. This memory is protected completely
from the slave CPU and its application programs. The protected portion has an
address range from 0000 through 16383. The master CPU also has the ability to
map any 16K section of the slave memory into an additional address space
available only to the master. This allows the master CPU access to user buf-
fers and pointers and is needed by the Debug Trace program.

Having separate master and slave memories insures that the operating system
need not interfere with user programs. This also protects the integrity of

the operating system; the operating system in the master memory cannot be
inadvertently effected by development programs.

PROM PROGRAMMING

The development computer contains two optional PROM programming boards and
three front-panel PROM sockets. The two programming boards are used for the
82S115 bipolar PROM and the 1702A MOS PROM. Programming of the PROMs is

accomplished under program control, with a completely assembled and debugged
program. A front-panel switch turns off PROM programmer power so that devices
cannot be damaged during insertion and removal.

A universal PROM programming software interface is provided for the DATA I/O

PROM Programmers Models 7 and 9, for either Basic I/O (055-0000) or Remote
Control (055-0092).

* Although the 2650 slave can address only 32K of memory, a 64K memory
capability is provided to allow future use of the TWIN with other slave
CPUs.

2-2

DEBUG HARDWARE

The Debug circuitry is an interrupt-driven interface between the master CPU
and the active slave CPU. The master CPU can force an interrupt, a reset, or
a branch. The slave can also be run in single-step mode. There are two hard-
ware comparator registers available for address breakpoints. The debug inter-
rupt logic is used to handle all I/O service requests from the slave CPU.

TWICE HARDWARE

The TWICE hardware consists of a cable and driver/receiver circuits that allow
in-circuit emulation of user programs in user developed hardware. The user's
2650 microprocessor is removed and replaced by a cable plugged directly into
the 2650 socket. The other end of the cable is attached to the TWIN slave
CPU circuit board, which contains the multiplexing and other logic to support
the TWICE modes. The slave CPU thus becomes the CPU for the user system.

There are three modes of operation:

1) The slave CPU runs the program residing in slave memory using the I/O

circuits contained in the TWIN system. This is the normal non-TWICE

mode.

2) The slave CPU runs the program resident in slave memory, but all I/O
signals and data are derived from external user developed hardware.

3) The slave CPU runs user programs resident in external user development
memory. All I/O signals and data are derived from the user developed
hardware.

2.1.2 Dual Floppy Disk Subsystem

The floppy disk subsystem is the mass-storage medium for the system. The

subsystem consists of two disk drives, a microprogrammed controller, power
supplies, and cabinet. The disk subsystem communicates directly with the
development computer through an interconnecting cable.

CONTROLLER

The floppy disk controller utilizes a 128-byte sector buffer to allow asyn-

chronous data transfer. Other important features include sector interleaving,
automatic data blocking, automatic system boot on power-up, automatic retry on
read or write failures, and the ability to expand to a four drive system.

2-3

DISKETTE

The organization of data on a diskette is pictured in Figures 2-la and 2-1b.
On each diskette, there are 77 concentric circles (Figure 2-la), which can
contain data. Each circle is referred to as a track. In Figure 2-1b, a track
is divided into its component parts. Each quarter track is referred to as a
block. Each block is split into eight sectors. A sector is the basic unit of
disk data. Each sector can contain 128 eight-bit bytes. Due to directory
limitations, a maximum of 78 files can be contained on one diskette. The disk
operating system reserves track 0 for the disk directory, and tracks one
through four are normally automatically reserved for the resident portion of
SDOS.

In order for the disk drive to be able to read or write a diskette, the disk-
ette must have certain information on it. The process of placing this infor-
mation on the diskette is called formatting. If diskettes are purchased from
Signetics, they are pre-formatted. 	If diskettes are not purchased from Sig-
netics, they MUST be formatted before use. (Section 4.7.1).

2.2 PERIPHERALS

Peripherals compatible with the system include a CRT terminal with a full
ASCII keyboard, a line printer, and ASR-33 Teletypewriter, and a paper tape
reader. 	In addition, the GPIO card supports any RS-232-C compatible device
and contains four 8-bit parallel I/O ports which allow the user to interface
TTL compatible peripherals to the TWIN.

2.2.1 CRT Terminal

The CRT terminal is the primary I/O device for the operator. The terminal
consists of a CRT display and an operator keyboard. The keyboard is a stand-
ard typewriter-style unit with additional mode keys. The CRT and keyboard can
be separated for operator convenience.

2.2.2 ASR-33 Teletypewriter

A standard ASR-33 with a 20 mA current loop or RS-232-C interface can be used
as an alternate console I/O device. In addition, the TTY can be used to pro-
vide hard copy and to punch paper tapes for file storage off line.

2.2.3 Line Printer

A Centronics 306C line printer is available for hard copy output. The stand-
ard line printer is connected through a cable to the floppy disk subsystem,
and is capable of printing 100 characters per second with an 80 character
column width, or 165 characters per second with a 132 character column width.

2.2.4 User-Supplied Peripherals

Any RS-232-C compatible peripheral can be connected to the serial I/O port of
the GPIO card, or any 8-bit parallel device to one of the four parallel ports
on the GPIO card. If these peripherals are to interface to the operating

2-4

Figure 2-1. Diskette

2-5

system, the user may use the general purpose RS-232-C driver supplied with the
system, or he may add his own software driver. This driver is added to the
TWIN software using the method described in Appendix H.

2.3 SOFTWARE

The TWIN development system software eonsists of the Signetics Disk Operating

System, SDOS, and its associated commands. SDOS commands allo invoke the
Editor, the Assembler, and the System Readiness Test.

2.3.1 SDOS

SDOS provides the user with a variety of commands that will allow the user to
exercise the flexibility of the TWIN system. SDOS provides commands that:

. Perform disk and file maintenance

. Set the mode for I/O channels

. Perform system utility functions

. Allow the user to control execution of programs

. Display important system status

. Manipulate and modify object code

These commands, as well as SDOS, are described in Chapter 4.

2.3.2 The Debug Monitor

The Assembler can only detect syntax errors in a source program. There

usually remain a number of logic errors in an object program which cannot be
detected by the Assembler. An object program is therefore executed in con-
junction with the Debugger in order to detect logic errors. The Debugger is
able to control the execution of object programs while examining, changing or
tracing the contents of memory, registers or system status.

The Debug monitor, as part of SDOS, executes in master memory. All Debug I/O

functions are performed by SDOS. Due to the fact that the master CPU may not
access the slave CPU registers directly, a small debug utility program package
resides in slave memory to make slave CPU registers available to SDOS for
examination and modification.

2.3.3 PROM Programming

SDOS provides a series of commands that allow PROMs to be read, written and
compared with slave memory. Most of these commands apply to the PROM sockets

located in the front panel. A command is provided for operating the universal
PROM programmer interface software.

2-6

2.3.4 The Editor

After a source prográm is conceived and designed, it can be input to the TWIN
system with a program called the Editor, which will store a key-entered source
program on the floppy disk. The Editor is also used to modify source programs
that already exist on mass storage.

The Editor runs in slave memory using the slave CPU. All remaining available
slave memory is used for the Editor's text buffer, which is the location of
the data operated on by the Editor. SDOS performs all the Editor's I/O re-
quests.

2.3.5 The Assemblers

After a source program has been entered and stored on disk, it must be trans-
lated into a machine-executable object program. This function is performed by
an assembler, which stores the object code it has assembled from the source
program on mass storage.

The Assemblers run in slave memory using the slave CPU. The Assemblers use
the available part of slave memory for I/O buffers and to create its symbol
tables. SDOS handles all the Assemblers' I/O requests. Both an absolute and
relocatable assembler are provided. The relocatable assembler is described in
a separate manual titled TWIN 2650 Relocatable Assembler Manual, publication
number TW09007000.

2.3.6 Systems Readiness Test

The Systems Readiness Test allows the user to insure that the TWIN system is
operational. This test is described in Appendix E.

2-7

0

0

CHAPTER 3

SYSTEM OPERATION

3.0 INTRODUCTION

This chapter describes unpacking, installation, interconnection, and initial
operation of the system. Refer to the individual peripheral manuals provided
for specific installation procedures for these units.

3.1 UNPACKING

The system is shipped with each major unit in a separate carton. Before un-
packing the units, inspect each carton for signs of external damage. 	If any
damage is detected, make a note on the shipper's receipt.

3.1.1 Unpacking the TWIN Development Computer

To unpack the TWIN development computer, open the carton and remove the unit
from its packing supports. Place the computer on a bench top and remove the
top cover. Remove the packing material from the printed circuit boards and
install them in the proper card slots. The correct position for each board is
shown in Figure 3-1. The boards are keyed to prevent them from being in-
stalled backwards. Push each board firmly into its mother board socket.
Untape and remove the power-on switch keys from the chassis and place in the
key switch.

Connect the ribbon cable from the front panel to P3 on the Debug card, the
ribbon cable from J108 on the rear panel to P2 on the Master CPU card, the
ribbon cable from the left-most PROM socket on the front panel to P2 on the
1702A Programmer card (if included in the system), and the ribbon cable from
the center socket on the front panel to P2 on the 82S115 Programmer card (if
included in the system). Note that the red wire on each cable indicates the
end of the cable to be connected to pin 1 of its mating connector. A top view

of the computer unit with cards and cables properly installed is shown in
Figure 3-2. Do not replace the top cover at this time.

3.1.2 Unpacking the CRT Terminal

Open the carton and remove the packing material from the top of the unit.
Lift the terminal and the keyboard out of the carton and set it on a bench top.

No further installation is required until the system is ready for inter-
connection and operation.

3-1

J1 	 1702A PROM PROGRAMMER *

J2 	 82S115 PROM PROGRAMMER *

J3 	 GENERAL PURPOSE I/O *

J4 	 4K RAM/2K PROM - MASTER

J5 	 4K RAM - MASTER

J6 	 4K RAM - MASTER

J7 	 4K RAM - MASTER

J8 	 MASTER CPU

J9 	 DEBUG AND FRONT PANEL I/O

J10 	 SPARE

J11 	 4K RAM - SLAVE

J12 	 4K RAM - SLAVE

J13 	 4K RAM - SLAVE

J14 	 4K RAM - SLAVE

J15 	 SPARE

316 	 SPARE

317 	 SPARE

J18 	 SPARE

019 	 SPARE

J20 	 2650 SLAVE CPU

* Optional

Figure 3-1. Dvelopment Computer PC Board Layout

3-2

Figure 3-2. Development Computer (Top View)

3-3

3.1.3 Unpacking the Floppy Disk Unit

To unpack the floppy disk unit, open the carton and remove the packing sup-
ports. Lift the unit out of the carton and place on the bench top. Remove
the top cover and remove the packing material from around the controller
printed circuit board. Make sure the board is secured in its card guides.
Unwind the floppy disk and printer tnterconnect cables and feed them through
the channel provided for them in the rear panel. Insure that the ribbon
cables are firmly installed in their sockets. Replace the top cover and open
the two diskette loading doors.

3.1.4 Unpacking the Line Printer

To unpack the line printer you must have the following tools available:
1) 17 mm and 19 mm socket wrenches, or 2) an adjustable wrench. Remove the
tape or straps holding the outer cardboard carton to the wooden pallet. Lift
the carton off the pallet. Remove the plastic covering the printer. To com-
plete the unpacking, refer to the detailed instructions packed with the
printer. These instructions also provide the necessary information on paper
installation procedures.

3.1.5 Installing the TWICE Debug Cable

It is recommended that the TWICE debug cable be set aside until required for
protoypte system checkout. At such time, install the cable as follows. Re-
move the top cover from the computer unit. Unwind the cables from the TWICE
interface assembly. Feed the ribbon cables marked P2 and P3 through an access
slot in the rear panel and connect them to their corresponding connectors P2
and P3 on the slave CPU card. Replace the top cover. Turn off the power on
the user prototype system. Connect the 40 pin TWICE connector to the 2650
socket on the user prototype system, making sure that pin 1 aligns correctly.
The TWIN system is now ready for TWICE operation.

3.2 INTERCONNECTION AND PHYSICAL INSTALLATION

The units should be placed on a convenient flat surface, close enough to each
other for the interconnecting cables to reach. Since the CRT terminal and the
TWIN development computer draw cooling air through openings in the bottom of
their cabinets, these units should be located where it is unlikely that paper,
plastic, carpeting or other materials will be drawn into the air intake and
cause overheating. The other units draw cooling air from openings in the rear
panel.

3.2.1 Power Requirements

Each system unit has a separate power cord and requires a separate outlet for
primary power. Current requirements are as follows:

Development Computer:
	

3.5 amperes at 115 VAC, 60 Hz

1.8 amperes at 230 VAC, 50 Hz

Dual Floppy Disk Unit:
	

4.0 amperes at 115 VAC, 60 Hz
2.0 amperes at 230 VAC, 50 Hz

3-4

Line Printer:
	

3.0 amperes at 115 VAC, 60 Hz
1.6 amperes at 230 VAC, 50 Hz

CRT Terminal:
	

2.0 amperes at 115 VAC, 60 Hz

1.1 amperes at 230 VAC, 50 Hz

3.2.2 Interconnection

Before connecting any units to the primary power source, turn all power

switches to the OFF position. Rotate the development computer key switch
fully counterclockwise. Insure that all units are wired for the primary input
voltage used.

Make the system interconnections as follows:

1. Connect the dual floppy disk unit to the development computer by

routing the 50 lead ribbon cable (90014021) from the rear of the disk
unit through the center cableway on the rear of the computer to P3 of
the Master CPU card. 	Insure that pin 1 of the cable (red stripe) is

mated to pin 1 of P3. Replace the top cover on the computer unit.

2. If a line printer is used, connect the ribbon cable (90014172) from
the rear of the floppy disk unit to the connector on the rear panel
of the printer. Lock the cable in place.

3. Connect the CRT terminal to the development computer by installing

the cable (90014191) between J108 on the computer rear panel and the
I/O connector on the rear panel of the terminal. The ends of the
cable are identical.

4. If multiple disk units are included in the system, refer to the spe-
cial instructions packed with the system for installation of the
additional units.

5. Connect all power cords to the line power source.

3.3 SYSTEM CONTROLS AND INDICATORS

The operator controls and indicators for the system units, including periph-
erals, are described below.

3.3.1 Development Computer

Referring to Figure 3-3, the following controls are located on the computer
front panel:

1. 	The key-operated switch controls primary power to the unit. When the
key is rotated fully clockwise, power is applied; when the key is
rotated fully counterclockwise, power is off and the key may be re-
moved.

3-5

Figure 3-3. Computer Front Panel

3-6

2. The back-lighted display has the following legends:

PWR 	lights when primary power is applied.

MSTR 	lights when the master CPU has control.

SLV 	lights when the,slave CPU has control.

RUN 	lights when the system is running.

3. The DIAG INT switch initiates a reload of SDOS when the system is in
the RUN state. Control is returned to the master CPU. This switch
is used with the maintenance diagnostic software.

4. The RESET switch terminates any program in progress. The hardware is
initialized, and the operating system is reloaded from the system
diskette.

5. The PROM PWR switch enables or disables PROM programming power at the
front-panel PROM sockets. When enabled, the PPWR indicator above the
switch is lighted. PROM PWR should be off whenever devices are in-
serted or removed from the PROM sockets.

6. PROM programming sockets:

The leftmost socket (PROM1) is used for programming type 1702A
MOS PROMs.

The center (PROM2) is used for programming type 82S115 bipolar
PROMs.

The rightmost socket (PROM3) is reserved for future use.

All three sockets are zero insertion force sockets.

Referring to Figure 3-4, the following items are located on the rear panel.

1. AC IN is the connector for primary power, using the power cable sup-
plied with the unit.

2. The 115/230 slide switch selects the internal voltage taps for 115V
or 230V operation. Insure that F3 and F4 contain the proper fuses
for the selected voltage.

3. The barrier terminal strip allows connection of an external supply to
a separate motherboard bus line and allows the user the choice of
chassis grounded or floating logic. To connect signal ground to
chassis ground, connect the terminals so marked together.

4. Fuses protect the internal power supplies. F4 is the fuse for pri-
mary power input. F3 independently fuses the +12V power supply. F1
and F2 fuse the PROM programmer AC secondary voltage.

3-7

Figure 3-4. Computer Rear Panel

3-8

5. 	J108 is a female connector used to connect the CRT terminal or the
teletype to. the computer.

3.3.2 Dual Floppy Disk Unit

The floppy disk unit has a single front-panel power on/off push-button switch
that is lighted when primary power is on.

The disk unit rear panel contains a connector for disk expansion, a fuse for
primary power, and a connector for the power cable.

3.3.3 CRT Terminal

The terminal consists of a CRT unit and keyboard. The keyboard layout closely
approximates an ASR-33 Teletype. Refer to the CRT terminal operator's manual
for details of terminal operation.

3.3.4 Printer

The optional printer is a Centronics 306C. Refer to the Centronics 306C
operator's manual for details of printer operation.

3.4 OPERATION

To power up the TWIN system and load the operating system, SDOS, into memory,
perform the following steps.

1) Power up the CRT terminal. After a brief warm-up period, the cursor
will appear on the screen. Adjust the intensity to the desired level.

2) Power up the floppy disk unit.

CAUTION

DO NOT TURN POWER ON OR OFF THE DISK UNIT
WITH DISKETTES INSTALLED AND DOORS CLOSED AS
MEDIA DATA MIGHT BE DESTROYED.

3
	

Allow a five minute warm-up time to allow the disk drive electronics
to reach stable temperature.

4) Insert the system diskette into drive 0. The correct method for

inserting a diskette is shown in Figure 3-5. 	Insure that the label
area is toward the power switch on the disk unit and is the last part
of the diskette inserted into the drive. Close disk drive door only
after power has been applied to the TWIN development computer.

5) Apply power to the printer.

6) Apply power to the TWIN development computer. This will cause an
automatic read from drive 0 which will load SDOS into master memory.

3-9

Figure 3-5. Inserting a Diskette

3-10

When SDOS has been loaded, this welcoming message will be displayed on
the terminal:

>SDOS VER X.Y 2650

The > is the SDOS prompt character and it informs you that SDOS is ready to
accept commands.

If the welcoming message does not appear with 15 seconds, depress the RESET
switch. If the system does not respond correctly again, an improper diskette
or a faulty drive may be the problem. Try again with a new system diskette
and/or using drive 1. If trouble persists, request service assistance.

NOTE

The TWIN computer will automatically switch
the initialization process to drive 1 if
attempts to load from drive 0 fail
repeatedly.

If the welcoming message is incorrect, the baud rate-setting of the CRT may
not correspond to the rate selected on the Master CPU card. Select the cor-
rect baud rate on the CRT terminal rear panel. Depending on the version
level of the master CPU either a slide switch or a thumbwheel switch is
present to select the baud rate. For the thumbweel switch see fig. 3.6
for baud selection. If slide switch is present then there are two baud
rates directly available 110 and the rate selected by the jumpers on the
master CPU. Refer to the TWIN System Reference Manual for information on
changing the baud rate on the Master CPU card. page 3-19.

NOTE

The 110 baud indication on the Master CPU
(slide switch version) is incorrect. 110
baud is available when switch is not in
110 baud position.

3.4.1. Manual Reset

If a reinitialization of the system is desired during operation, the
user may reload SDOS by pressing the RESET switch on the front panel.
The welcoming message and the prompt character will be issued after
SDOS has been loaded.

OPERATORS GUIDE 	 REV B

3-11

Thumbwheel
POSITION Format

Baud
RATE

110

110

150

300

600

1200

2400

Illegal

Illegal

Illegal

Binary 	(2 Stop Bits)

ASCII + Parity (2 Stop Bits)
ASCII + Parity (1 Stop Bit)
ASCII + Parity (1 Stop Bit)
ASCII + Parity (1 Stop Bit)

ASCII + Parity (1 Stop Bit)

ASCII + Parity (1 Stop Bit)

9
8

7
6
5
4
3
2

1

0

It is possible to select Binary for Thumbwheel positions

3 - 8 by removing jumper J1 (situated top left when viewed

from component side) on master CPU

Fig. 3-6

BAUD SELECTION THUMBWHEEL SWITCH

3.-12
	 REV B

CHAPTER 4

SIGNETICS DISK OPERATING SYSTEM

4.0 INTRODUCTION

This section describes the Signetics Disk Operating System, SDOS, for the TWIN
system. General topics include the use of the keyboard to enter commands or
request control of the system, an overview of the SDOS file structure, a cata-
log of the SDOS commands and their functions, and a study of the command file
capability and overlay areas. In addition, summaries of the SDOS commands and
SDOS error messages are provided.

4.1 SYSTEM DESCRIPTION

The Signetics Disk Operating System executes in system master memory. How-
ever, due to the size of SDOS, only a portion of the system may be memory
resident at a time. This resident portion of the operating system is loaded
into master memory whenever power is turned on to the system or the RESET
switch is toggled. Remaining portions are overlayed into master memory as
needed to execute system commands.

4.1.1 Resident SDOS

.The portion of SDOS which is resident in master memory at all times includes:

Command Line Processor
Job Dispatcher
Supervisor Call (SVC) Processor
Device Drivers
File Manager
Four Resident System Commands

Each of these modules is describe in detail below.

Command Line Processor: The command line processor operates on commands
entered from the system console or from a command file stored on diskette.
The command line processor interprets the commands and prepares a parameter
list. Then the function is performed by transferring control to the appro-
priate resident procedure or by loading and executing a system command.

Job Dispatcher: The job dispatcher controls execution of the active jobs in
the system. The job dispatcher transfers control to the highest priority job
whose I/O operation has been completed or which is ready to run.

4-1

Supervisor Call Processor: The supervisor call processor operates on internal
requests for input and output (I/O) or an SDOS function. All of the I/O com-
munication between the slave CPU and system peripherals is•performed by the
supervisor call processor.

File Manager and Device Drivers: The flexible disk drive file manager and
other device drivers control operation, of the peripheral devices in the system.

Resident Commands: GO, LOAD, XEQ, and SYSTEM are resident to facilitate sys-
tem initial program load and debugging.

4.1.2 SOOS Overlays

The SDOS overlays consist of all SDOS commands except the four memory-resident
commands and the Editor and Assemblers which run as slave jobs.

Master memory contains two overlay areas into which the SDOS command overlays
are loaded and executed. The overlay areas are referred to as Overlay Area 1
and Overlay Area 2. Some SDOS commands are executed in Overlay Area 1, some
are executed in Overlay area 2, and some occupy both overlay areas during
execution.

The SDOS commands are categorized in the following list by the overlay area in
which they are executed:

OVERLAY AREA 1 OVERLAY AREA 2 	OVERLAY AREA 1 & 2

COPY 	RHEX 	ABORT 	ICE 	CMPF
CPROM 	RPROM 	ASSIGN 	KILL 	DFIL
DEBUG 	RSMS 	BKPT 	MOVE 	LDIR
DUP 	VERIFY 	CLBP 	PATCH 	MODULE
FORMAT WHEX 	CLOSE RENAME 	PROM
PRINT(L) WSMS 	CONT 	RESET 	READ

WPROM 	DELETE 	SET 	WRITE
DEVICE 	STATUS
DSTAT 	SUSPEND
DUMP 	TRACE
EXAM 	TYPE
FILL 	UPR

SDOS commands can be executed concurrently as long as they do not occupy the
same overlay area. In addition, the concurrent execution must be consistent
with the current state of the peripheral devices and must not cause any system
conflicts.

To carry out concurrent command execution do the following steps.

1 	Start execution of the Overlay Area 1 command
2 	Depress the ESC key
3) Type the Overlay Area 2 command and depress the carriage return key.

4-2

As an example of concurrent command execution, suppose a paper tape was being
read into the slave memory. This would be accomplished using the RHEX command.

R TTYR

ESC

»DEL FILE1/1 DATA1/1 SOURCE/1 ®

While the tape is being proceseed, file maintenance could be performed.
Pressing the ESCAPE key suspends RHEX execution and displays the SDOS prompt
character,». The DELETE command is then entered.

When the Qr is entered, the RHEX command continues execution and the DEL com-
mand starts. Note that RHEX executes in Overlay Area 1, while DELETE operates
in Overlay Area 2, allowing concurrent execution of these programs.

4.1.3 System Slave Jobs

The system commands EDIT, ASM, MAC, RASM, and LINK run as slave jobs under the
slave CPU. The size of the programs and data buffers needed for these jobs
prohibits them from running in master memory under the command overlay scheme.

4.1.4 Debug Utility Program

To communicate with the slave CPU, SDOS requires that a minimum package of
debug utility programs be slave memory resident. These programs perform such
functions as save and restore slave CPU registers for TRACE output, and buf-
fering data being passed between the master and slave. The SDOS commands
which utilize the debug utility programs are PATCH, EXAM, MOVE, FILL, READ,
WRITE, the Debugger, and system slave jobs; in short, things which write to or
read from slave memory.

The debug utility programs are loaded into the top-most 256 bytes of slave
memory whenever the system is powered on or the RESET switch is toggled. This
block of slave memory is write-protected, rendering it inaccessible to the
user. However, these programs are not protected when the LOAD or XEQ commands
are executed.

NOTE

To utilize the top-most memory locations in

a user program, relocate the debug utility
programs to another area of slave memory
with the system command UPR.

4.2 FILE MANAGEMENT AND DISKETTES

Before using SDOS, several concepts regarding diskettes and disk drives re-

quire explanation.

1) Before using any new diskette not purchased from Signetics, THE NEW
DISKETTE MUST BE FORMATTED AND VERIFIED. Follow the procedures out-
lined in the discussion of the SDOS commands FORMAT and VERIFY.

1

4-3

All diskettes purchased from Signetics are pre-formatted and verified

and thereforie do not require these operations before use.

2. Every diskette has a write protect slot (see Figure 3-5).

A) If the slot is covered, the diskette is write enabled. The disk-
ette can be read from or written to by the operating system.

B) If the slot is not covered, the diskette is write protected. The

diskette can only be read from. Any attempt to write to a write-
protected diskette will cause an SDOS error to appear on the
system console.

3) The typical TWIN system has two disk drives, although there may be up
to four.

Drive 0 is normally the system drive. The diskette loaded on the

system drive is known as the system diskette and must contain the
system programs. The system drive is the drive which SDOS accesses
when it must load a system command. The system drive is also the
drive used when a drive number is not specified with a file name in an
SDOS command. The system diskette can be write protected to ensure
that the system programs are not altered.

Drive 1 usually contains a user diskette which contains user files.
This diskette is used for modifying user files or as a scratch data
area, and may or may not contain the system programs. This diskette
is not write protected, since it may be used as a scratch area.

4.2.1 Files, Devices, and Channels

SDOS is a file-oriented system. The understanding of a file-oriented system
is greatly enhanced by understanding the concepts of a file, a device and a
channel.

Files

A file is a discrete set of data. The set has a logical beginning and a
logical end. For example, the government's file on a person's tax return
might begin with the first return filed by the person and end with his last
return filed. In between the first return and the last return there could be
other returns, audits, etc. All the information beginning with the first re-

turn and ending with the last return is the file.

In the TWIN system, files are stored on floppy diskettes. A file can be

accessed through its logical beginning address (a map that indicates where the
data in the file is located on the disk), and a logical ending address.

Devices

Devices are physical peripherals that provide input and output services for

SDOS. The four standard devices are the console input device, the console
output device, the Centronics line printer, and the teletype reader. These
devices all have reserved names through which the user must access them.

These names appear in Table 4-1A.

4-4

)
TABLE 4-1A. RESERVED DEVICE NAMES

DEVICE NAME
	

DEVICE

CONI
	

CONSOLE INPUT
CONO
	

CONSOLE OUTPUT
LPT1
	

LINE PRINTER 1
TTYR
	

TELETYPE READER

The system may be optionally configured to include one additional device of
the user's choice. A software driver is provided for each of these devices,
as well as procedures to configure these drives into the system. These
optional devices are the Printronix 300 line printer, the high speed paper
tape reader, and the RS232 port on the GPIO card. The names by which these
devices are accessed are shown in Table 4-1B.

TABLE 4-1B. OPTIONAL DEVICE NAMES

DEVICE NAME
	

DEVICE

LPT2
	

PRINTRONIX 300 LINE PRINTER
HSPT
	

HIGH SPEED PAPER TAPE READER
R232
	

RS232 PORT

NO TE

Only one of the optional devices may be con-
figured into SDOS at a time. The device
name is then reserved only as long as that
device driver is configured into SDOS

SDOS is shipped configured for the optional
device R232.

For example, using device names, enter the command:

>COPY TTYR LPT1

which copies the information from the teletype paper tape reader to the line
printer.

NO TE

Although SDOS software supports a high speed
paper tape reader, this peripheral is not
currently available for the TWIN system.

4-5

Files may also be viewed as devices. Files can be specified as either input
or output devices. To refer to a file as a device, you must refer to the file
name for that file. In addition, if the file is not located on the diskette
installed in the system drive it is necessary to specify the drive on which
the file is located.

SDOS is only aware of diskettes that 'are loaded in the available disk drives.

For this reason, diskettes are referred to by drive number rather than by
diskette name.

As an example, suppose you had diskettes loaded in drives 0 and 1. Drive 0 is

the system drive. There is a file named DATA1 on drive 0 and a file named
DATA1 on drive 1. If it were necessary to copy DATA1 to the line printer, how
would this be accomplished? The action is performed by specifying a drive
number to indicate which DATA1 is to be copied. To copy DATA1 on drive 1 to
the line printer, the following command would be performed:

>COPY DATA1/1 LPT1

In this example, the /1 following the file name specifies that the file on
drive 1 is to be copied.

Channels

Channels are used by the program running on the slave CPU. A channel is
assigned to a physical device to enable the slave CPU to perform input or out-
put operations to the device through that channel. The device specified in
the assignment may be either a physical device or a file. Channels must be
assigned to physical devices prior to performing I/O.

4.2.2 File Names

A file name has the following properties:

1) The file name must contain at least one but not more than eight char-

acters.

2) The characters in the name must come from the following set:

The alphabetic characters (A-Z)

The numeric characters (0-9)
The special characters ! " # % & ' () * 	= ?

3) The file name may not begin with a numeric character.

4) The file name must not be one of the reserved names which identify
physical devices: CONO, CONI, LPT1, TTYR or the current optional sys-
tem device name.

5) The file name must be unique to the diskette containing the file.

File names entered as parameters in an SDOS command line may include the
file's drive number by appending an /n, where n is the drive number, to the
file name.

4-6

4.2.3 File Directories

Every diskette has a system area, called the directory, where system informa-
tion is kept concerning all files on that diskette. This information includes
the filename, disk sectors used, beginning and ending disk addresses, and load
module ID. The directory also includes system information that prevents the
allocation of bad disk sectors for file usage.

4.3 ENTERING SDOS COMMANDS

The SDOS command line consists of the command name and in most cases, one or
more parameters with delimiting characters. Most commands require that para-
meters be specified. The command is always separated from its parameter by
one or more spaces or by a comma. When two or more parameters are present in
a command line, the parameters must also be separated by spaces or a comma.
The following two command lines are interpreted by SDOS in the same way:

>LDIR 0 /
>LIDR,0,/

The command line is entered after the prompt character > is displayed. In the
example above, each command line is preceded by the prompt character. LDIR is
the command to be executed, the 0 (zero) is the first parameter, and the "/"
is the second parameter.

4.3.1 Command Description

Syntax

[device
COMMAND1 file name file name [/disk drive] [I linenumber 1} 1 line number 2 d...

Command Name

A minimum set of characters is required for each command. This minimum set of
characters is underlined in the syntactical description.

In addition to the minimum set of characters in the command name, a maximum
set (long form) is also given for each command name. Any number of characters
in the command name ranging from the short form spelling to the long form
spelling may be used as long as the exact spelling is followed.

Delimiters

The components in the command line must be separated by delimiters when
entered into the computer. A space is used as the main delimiter. The slash
"/" is used to delimit a file name and the disk drive number.

The comma may be used as a delimiter in most cases. 	In the text editor a
comma may not be used as a delimiter between a command the parameters. Two

4-7

commas are used to specify null or empty fields in a parameter list. Three
commas are used to specify two adjacent null fields.

Special delimiters may be required by you in some text editor commands, as for
the FIND and SUBSTITUTE commands. The delimiters you specify in these cases
must not be any of the characters in the string being sought or replaced. For
example, if you are trying to•find the string $15 in the text, you might use
the ampersand "&" character as the delimiter in this way:

* FIND &$15&

Parameters

The parameters or controlling conditions of each command line are shown in the
syntactical description above. These parameters may be names, numbers, char-
acters or symbols. When the parameter is shown capitalized it must be entered
exactly as shown. A parameter shown in lower case letters is a descriptive
term to signify the type of entry, as shown above.

Braces and Brackets

When the parameter is enclosed in braces,1 hthe parameter must be present in
the command line. Parameters enclosed in brackets,[], are optional. Brac-
kets and braces may be nested. The following is an example of braces nested
in brackets:

[{line number 1} 	{line number

The use of braces and brackets are for syntactical representation and should
not be entered as part of the command line.

Stacked Item

Parameters stacked within either braces or brackets indicate that only one of
the enclosed items should be selected. In the example below a peripheral
device name may be selected or a file name with a disk drive number, but not
both.

[device
file name [/disk drive]]

Trailing Dots

A line of dots following a parameter indicate that the parameter may be
repeated a number of times not to exceed the length of the system console
display line, normally 80 characters including the carriage return. 	In the
example below the line number parameters can be repeated:

[{line number 1} 	{line number

4-8

Numeric Values

A parameter calling for a numeric value may be referenced in the explanation
by "n". A parameter range may be referenced by "a" and "b". Multiple numeric
parameters may be referenced in order by "a", "b", "c", etc.

4.3.2 Command Completion

Most SDOS commands indicate that they have completed their function by dis-
playing and End-of-Job message. The form of this message is:

id EOJ

where:

id
	

is the SDOS system program identifier (see Table 4-2)
EOJ
	

is the end of job message

Completion of any user-entered command causes the SDOS prompt character '
to be displayed.

4.3.3 Error Reporting

When an error is encountered during the execution of a command, command pro-
cessing aborts and the command completion is with an error message rather than
with the normal completion message. The form of the error message is:

id ERR xx

where:

id 	is the SDOS system program identifier (See Table 4-2)
ERR 	is the error condition indicator
xx 	is the SDOS error code (see Table 4-3)

Completion of the command results in display of the SDOS prompt character 1 > 1 .

Error conditions which can occur for each command are listed under the command
descriptions on the following pages.

4-9

TABLE 4-2. SDOS SYSTEM PROGRAM IDENTIFIERS

ABT
ASN
CLS
CMP
CON
COP
DEB
DEL
DEV
DFL
DIR
DMP
DOS
DUP
EXM
FIL
FMT
ICE
KIL
MOD
MOV
PAT
PRM
PRN
RDW
REN
RH X
SLJ
SMS
SUS
TYP
UPR
VER
WHX

ABORT OVERLAY
ASSIGN OVERLAY
CLOSE OVERLAY
CMPF OVERLAY
CONT OVERLAY
COPY OVERLAY
DEBUG OVERLAY
DELETE OVERLAY
DEVICE OVERLAY
DFIL OVERLAY
LDIR OVERLAY
DUMP OVERLAY
SDOS RESIDENT PROGRAM
DUP OVERLAY
EXAM OVERLAY
FILL OVERLAY
FORMAT OVERLAY
ICE OVERLAY
KILL OVERLAY
MODULE OVERLAY
MOVE OVERYLAY
PATCH OVERLAY
PROM PROGRAMMING OVERLAY
PRINT OVERLAY
READ/WRITE OVERLAY
RENAME OVERLAY
RHEX OVERLAY
PROGRAM RUNNING UNDER SLAVE CPU
SMS OVERLAYS
SUSPEND OVERLAY
TYPE OVERLAY
UPR OVERLAY
VERIFY OVERLAY
WHEX OVERLAY

4-10

TABLE 4-3. SDOS ERROR MESSAGES

ERROR DESCRIPTION ERROR DESCRIPTION

35
36
37
38
39
40
41

42

43
44

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69

DIRECTORY READ ERROR
DIRECTORY WRITE ERROR
COMMAND FILE NOT FOUND
COMMAND FILE INPUT ERROR
COMMAND FILE BUSY
DEVICE READ ERROR
DEVICE WRITE ERROR OR
END-OF-DEVICE

DRIVE NOT SPECIFIED
WHEN REQUIRED

INVALID DRIVE NUMBER
OVERLAY LOAD FAILURE
OVERLAY AREA IN USE
INVALID FILE NAME
INPUT FILE NOT FOUND
INVALID INPUT DEVICE
INVALID OUTPUT DEVICE
INPUT DEVICE ASSIGN
FAILURE

OUTPUT DEVICE ASSIGN
FAILURE

DEVICE IN USE
INVALID CHANNEL NUMBER
CHANNEL IN USE
CHANNEL ASSIGN FAILURE
COMMAND LINE BUFFER
OVERFLOW

INVALID COMMAND
JOB NOT ACTIVE
JOB NOT SUSPENDED
JOB ALREADY SUSPENDED
JOB EXECUTING
JOB UNDER DEBUG CONTROL
PROM POWER FAILURE

(front panel)
INVALID PARAMETER
PARAMETER REQUIRED
TOO MANY PARAMETERS

BIAS PARAMETER ERROR
INVALID ADDRESS

INVALID START ADDRESS
INVALID END ADDRESS
INVALID GO ADDRESS
UNUSED
INVALID HEX CHARACTER
INVALID RHEX INPUT FORMAT
INVALID BREAKPOINT ACCESS
MODE

INVALID REGISTER
PARAMETER

INVALID DATA PARAMETER
INVALID TRACE MODE
PARAMETER

INVALID SLAVE SRB
ADDRESS

SLAVE HALTED
SYSTEM AREA BAD
LOAD FILE NOT FOUND
LOAD FILE ASSIGN FAILURE
FILE NOT A LOAD MODULE
INVALID LOAD REQUEST
INVALID DEVICE
UNUSED
INVALID MODE
INVALID MEMORY
INVALID DEVICE ADDRESS
FILE NAME IN USE
DEVICE ASSIGN FAILURE
MEMORY WRITE ERROR
END OF MEDIA
FILE IN USE
DEVICE NOT OPERATIONAL
DIRECTORY FULL
INVALID DISKETTE
MASTER MEMEORY PARITY ERROR
SLAVE MEMORY PARITY ERROR
UNUSED
DEBUG UTILITY ROUTINE CON-
FLICT OR MEMORY WRAPAROUND

UNUSED

1
2
3
4
5
6
7

8

9
10
11
12
13
14
15
16

17

18
19
20
21
22

23
24
25
26
27
28
29

30
31
32

33
34

4-11

4.4 SPECIAL KEYS

SDOS pays special attention to certain keys in order to facilitate the entry
of command lines and operator control of the system or to control system or
slave programs. These keys are:

KEY NAME 	 DESCRIPTION

Space Bar 	Suspends console display.

ESC 	Suspends or terminates any action.

CTRL-Z 	Issues an end-of-file character during
an ASCII read operation.

RUB OUT (or DELETE) 	Deletes the last character from the
line buffer.

These key functions are described on the following pages.

4-12

4.4.1 Space Bar

Space Bar

PURPOSE

The space bar is used to halt the display output to the console or cause the
display to continue.

EXPLANATION

Striking the space bar during console display temporarily halts the display.

Striking the space bar again causes the display to continue. The display may

be halted and continued as many times as needed.

4-13

4.4.2 ESC Key

ESC Key

PURPOSE

Striking the ESC key (escape) causes suspension or termination of program
execution and returns control to SDOS.

EXPLANATION

Striking the ESC key twice (ESC ESC) suspends all active programs. A program

suspended by this means (ESC ESC) does not resume execution unless a CONT
(continue execution) command is entered from the console.

The response to striking the ESC key once varies, depending on whether input
is being performed or a command is being executed. Some commands abort when
the ESC key is depressed, while some commands are not interruptable at all.
See Table 4-4.

ESC During Console Input

Striking the ESC key during an input operation produces differing results as
follows:

If an SDOS command line is being entered, the system deletes the com-

mand line and responds to the display console with a double prompt
character > > .

If the EXAM command is being executed, the command is terminated and a
double prompt character is displayed. Any memory locations that were
altered prior to striking the ESC key remain altered.

If the EDIT command is being executed, the Editor prompt character *
is displayed. When the Editor is in the Input mode, striking the ESC
key once deletes the current line being entered and moves the display
cursor to the next line. In this case a prompt character is not dis-
played. Striking the ESC key twice causes the Editor to suspend and
return to SDOS. In this case, EDIT can be resumed with the CONT com-
mand.

If a user program is being executed, the response depends on the func-
tion that the user has programmed for the ESC key.

ESC During Program Execution

Striking the ESC key during the execution of an SDOS command causes the execu-

tion of that command to pause. Execution of the command may be continued

4-14

either by striking the RETURN key or by entering the CONT command. This
allows you to do concurrent command execution as described under SDOS Over-
lays, Section 4.1.2.

The execution of certain SDOS commands, as shown in Table 4-4, will be termin-
ated by striking the ESC key instead of just being paused.

TABLE 4-4. ESC KEY USAGE WITH SDOS COMMANDS

Commands which abort upon depression of the ESC key:

CMPF 	EXAM
DFIL 	LDIR
DUMP 	STATUS

TRACE

Commands which cannot be interrupted with the ESC key:

All Overlay Area 2 commands

All other commands can be temporarily interrupted
with the ESC key.

0

4-15

4.4.3 Control —Z

CTR L—Z

PURPOSE

The CRTL-Z (control-Z) provides an end-of-file character during an ASCII read
operation.

EXPLANATION

A CRTL-Z is sent by holding down the CTRL (control) key while striking the Z
key.

The CRTL-Z is treated as an end-of-file character when an ASCII read is being
performed from the console or other system input device. 	It is the logical
end-of-file character.

CRTL-Z does not send a visual character to the console.

4-16

4.4.4 Rub Out Key

RUB OUT Key

PURPOSE

The RUB OUT key is used to delete an incorrectly entered character at the sys-

tem console.

EXPLANATION

Striking the RUB OUT key deletes the last character input from the console

keyboard. This function deletes the last character in the line buffer and
echoes that character to the display. If more than one character has been

entered incorrectly, the RUB OUT key may be used to delete each character in
the string. The entry can then be completed as if the incorrect characters

were never entered.

EXAMPLE

When entering the command line to copy paper tape information from the tele-

type reader to the console, if you enter the device name by mistake before the
file name, the entry may be corrected with the RUB OUT key as follows:

> COPY , CONOONOCTTYR , CONO

The underlined portion of the command line above shows the incorrect entry and

the effect of using the RUB OUT key four times followed by the correct entry.

4-17

4.5 SYSTEM CONTROL COMMANDS

You may control the execution of system or slave programs with the following
commands:

COMMAND NAME
	

DESCRIPTION

SUSPEND
	

Suspends program execution.

CONT
	

Continue execution of suspended pro-
grams.

ABORT 	Terminate program execution.

4-18

4.5.1 SUSPEND

program name
SUSPEND {*

PURPOSE

The SUSPEND command suspends the execution of active programs.

EXPLANATION

The SUSPEND command may be used with any active program except DEBUG.

The primary use for this command is in conjunction with the command file capa-
bility. Inserting the SUSPEND command in a command file suspends system
operation and allows some required user action, such as inserting a special
diskette into one of the drives.

The SUSPEND command must be accompanied by one of the parameters.

•
	

SUSPEND,* suspends all active programs.

SUSPEND,/ suspends any active slave program.

SUSPEND,program name suspends the specified program.

SUS Error Responses

24-Job not active
26-Job already suspended
31-Parameter required

4-19

4.5.2 CONT

program name
CONT

PURPOSE

The CONT command continues the execution of a suspended program.

EXPLANATION

A suspended program may be continued by entering the CONT command. Execution
of the suspended program resumes from the point where execution was suspended.

When the ESC key has been used to terminate execution of the SDOS commands
LDIR, CMPF, DFIL, TRACE, STATUS, EXAM and DUMP, they cannot be continued.

The CONT command must be accompanied by one of the following parameters.

CONT,* causes execution of all active programs to be resumed.

•
	

CONT,/ causes execution of an active slave program to be resumed.

CONT,program name causes execution of the specified program to be
continued.

CON Error Responses

24-Job not active
25-Job not suspended
31-Parameter required

4-20

} program name
* ABORT

4.5.3 ABORT

PURPOSE

The ABORT command terminates execution of an active program.

EXPLANATION

The ABORT command causes the execution of an active program to he terminated.
The ABORT command must be accompanied by one of the parameters.

ABORT,* causes all active programs to be terminated.

ABORT,/ causes an active slave program to be terminated.

ABORT,program name causes the named program to be terminated.

ABT Error Responses

24-Job not active
31-Parameter required

4-21

4.6 SYSTEM OPTIONS

You may set the value of various system options and control the slave channels

with the following commands:

COMMAND NAME 	 DESCRIPTION

SYSTEM 	 Designates the system drive.

DEVICE 	 Specifies device status to SDOS.

ICE

ASSIGN

CLOSE

Sets operation mode for the slave
CPU.

Assigns devices to slave I/O
channels.

Disconnects slave channels from

device assignments.

These commands are discussed on the following pages.

NO TE

The SEARCH command has been deleted from
SDOS in version 3.0.

4-22

4.6.1 SYSTEM

SYSTEM {drive number}

PURPOSE

The SYSTEM command is used to specify the disk drive to be used as the system
drive.

EXPLANATION

The SYSTEM command allows you to designate any disk drive as the system
drive. The default value for the system drive is 0.

Drive number must be in the range 0-3.

At power-up or on RESET, the system selects the system drive as the first disk
drive that contains a diskette. The search starts with drive 0.

DOS Error Responses

9-Invalid drive number

4-23

4.6.2 DEVICE

DEVICE Idevice name} {DU}

PURPOSE

The DEVICE command informs SDOS of the availability of a peripheral device.

EXPLANATION

The DEVICE command specifies the availability of the named device. The device

named must be one of the system device names (CONI, CONO, LPT1, TTYR; see
Tables 4-1A and B).

The second parameter, either U or D, must be specified. If U is specified,

the system is informed that the device is up and available for use. If D is
specified, ther system is informed that the device is down and not available
for use.

DEV Error Responses

30-Invalid parameter
31 Parameter required
52-Invalid device

4-24

4.6.3 ICE

!CE .1model.

PURPOSE

The ICE command is used to specify slave CPU operational mode.

EXPLANATION

The ICE command mode sets the slave CPU mode of operation. The possible val-
ues for mode are:

OFF - puts the slave in normal mode, using TWIN slave memory, I/O, and
clock.

1 - 	puts the slave into partial TWICE mode, using TWIN slave memory
with user prototype I/O and clock.

2 - 	puts the slave into full TWICE mode, using user prototype memory,
I/O, and clock.

The default is OFF.

ICE Error Responses

32-Too many parameters
54-Invalid mode

CAUTION

The ICE command replaces the SLAVE command
from SDOS version 2.0.

4-25

4.6.4 ASSIGN

device name device name
ASSIGN ichannel number} file name [/diskdrive] channel number file name [/disk drive] ...

PURPOSE

The ASSIGN command causes the connection of the logical slave I/O channel to
the specified device.

EXPLANATION

The ASSIGN command causes a slave I/O channel to be connected to a device.

The channel number must be in the range from 0 to 7. The device named may be
a file on a diskette or one of the system device names (CONI, CONO, LPT1 TTYR;
see Tables 4-1A and B).

Every disk file is viewed as an independent physical device. When a disk file

name is used as DEVICE in the ASSIGN command, the directory of the diskette is
searched for the file name. If the file name is not found, the file is cre-
ated in the directory.

The specified channel is connected to the device which results in all subse-

quent I/O operations on the channel being performed on that device.

A user application (slave) program may have only 7 of the 8 assignable chan-
nels assigned to files. When the command is executed from within a procedure
file, only 6 channels may be assigned to disk files.

ASN Error Responses

1-Directory read error
9-Invalid drive number
12-Invalid file name
18-Device in use
19-Invalid channel number
20-Channel in use
21-Channel assign failure
31-Parameter required
61-File in use
62-Device not operational

4-26

4.6.5 CLOSE

CLOSE {channel number} [channel number]

PURPOSE

The CLOSE command disconnects the specified slave I/O channel from its associ-
ated device.

EXPLANATION

The CLOSE command disconnects the channel from the device that was connected
to it by the ASSIGN Command.

If the channel was assigned to a disk file the data remaining in the SDOS
deblocking buffer is written to the file before closing.

The channel number must be in the range 0-7.

CLS Error Responses

2-Directory write error
7-Device write error
19-Invalid channel number

20-Channel in use
31-Parameter required

62-Device not operational
64-Invalid diskette

4-27

4.7 DISKETTE AND FILE UTILITIES

You can perform diskette and file utilities with these commands.

COMMAND NAME 	 DESCRIPTION

FORMAT 	 Iditializes a diskette.

VERIFY 	 Finds and catalogs defective blocks on a
diskette.

DUP 	 Duplicates all files on a diskette.

LDIR 	 Lists diskette directory.

RENAME 	 Changes file name or diskette ID.

COPY 	 Moves data between system devices.

PRINT and PRINTL 	Prints out lines of data to devices.

DELETE 	 Removes a file from a diskette.

CMPF 	 Compares two files.

DFIL 	 Dumps a file in Hex format.

These commands are explained in detail on the following pages.

4-28

4.7.1 FORMAT

FORMAT /disk drive} [ident]

PURPOSE

A new diskette must be formatted and verified before it can be used by SDOS.

The formatting process prepares a blank diskette for use with SDOS by writing
such informaton as clock bits, sync patterns, track and sector numbers, data
patterns and CRC characters on the diskette. The formatting process also pre-
sets the diskette directory to reserve tracks 1 through 4 for SDOS.

EXPLANATION

The FORMAT command causes the diskette on the specified drive to be for-

matted. The drive specified must not be the designated system drive. For
example, if the designated system drive is drive 1, the appropriate command
format is FORMAT 0. In this case the diskette on drive 0 is formatted. Since
tracks 0 through 4 are reserved for SDOS, any bad sector detected on these
tracks causes the process to abort.

The IDENT portion of the command is optional but serves to identify the disk-
. ette. This identification is always displayed when the diskette directory is
listed. If the IDENT is not specified at the time of formatting, a string of
blanks is used to identify the diskette. IDENT is truncated to 48 characters
if more than that are entered.

If the diskette is not used for storage of system software, the area reserved
for SDOS may be freed for other uses after formatting by entering the DELETE
SDOS/n command. This prevents the use of this diskette for system programs

unless it is again formatted, in which case any files on it are destroyed.

CAUTION

The DELETE SDOS command can delete SDOS from
your system diskette. If this happens, the
system is non-recoverable and you will need
to obtain a new system disk.

4-29

PROCEDURE FOR FORMATTING A FLEXIBLE DISK

1. Power up the TWIN as previously described in Section 3.4 of this manual.

2. Insert a system diskette into drive 0 of the Floppy Disk Unit.

3. Insert a blank diskette into drive 1.

4. Enter the following command string after the prompt character.

)>FORMAT 1 identification

5. Execution of this command takes approximately three minutes. When the
formatting process is completed, SDOS responds with:

FMT EOJ

FMT Error Responses

2-Directory write error
8-Drive not specified
9-Invalid drive number or system drive number
17-Output device assign failure
18-Device in use
47-System area bad

NO TE

Diskettes purchased from Signetics are pre-
formatted and verified for you.

4-30

4.7.2 VER IFY

VER I FY {disk drive[

PURPOSE

The verification process determines if any sectors on a diskette are defec-
tive, then records the location of the defective track on the bad block bit

map.

EXPLANATION

This command causes the diskette on the specified disk drive to be verified.

This verification process consists of reading every sector on the diskette and
noting all errors that occur. When an error on a sector is found, the four
blocks on the track in which the defective sector resides are recorded in the
bad block bit map. In addition, the track and sector number of the defective
sector are printed on the console. When all the sectors have been read, the
bad block bit map is written on the diskette. This is a read only process
which does not destroy data on the diskette; only the bad block bit map is
rewritten to the diskette.

Whenever files are created and disk space allocation for the file is per-

formed, reference is made to the bad block bit map and any defective blocks
are not allocated.

If a defective sector is detected on tracks 0 through 4 (the SDOS area) during

the verification process, the process is aborted and an appropriate message
displayed on the console.

VER Error Responses:

1-Directory read error

2-Directory write error
9-Invalid drive number
16-Input device assign failure
18-Device in use
31-Parameter required
47-System area bad

4-31

4.7.3 DUP

DUP {disk drive 11 Idisk drive 2 } [diskette identifier]

PURPOSE

The DUP command causes an exact duplication of the contents of the diskette in
drive 1 to be created on the diskette in drive 2.

EXPLANATION

The DUP command causes the files and directory data stored on the diskette on

disk drive 1 to be copied onto the diskette on disk drive 2. The disk drive
number entered for 1 may not be the same as the number used for 2. In addi-
tion, the number used for 2 may not specify the system drive.

The IDENTIFIER portion of the command is optional but serves to identify the
new diskette. This identification is always displayed when the disk directory
is listed. 	If the IDENTIFIER is not specified at the time of formatting, a
string of blanks is used to identify the new diskette. The IDENTIFIER is
truncated to 48 characters if more than that are entered.

If a disk read or write error occurs during a file copy, the output file is

deleted from the flexible disk on drive 2, a warning message is displayed on
the system console, and the DUP process continues with the next file.

The diskette on drive 2 should be verified before the DUP command is executed
in order to establish the bad block bit map for the diskette.

Uses for the DUP command include making backup diskettes for your system. At
times you may want to make a backup diskette for a non-system diskette. If
your system has more than two disk drives, the DUP command can be used if you
have the system disk in the system drive and the other two flexible disks in
other drives. The system disk is needed to provide the DUP command.

1f you have the minimum system with only two disk drives, it might seem impos-
sible to DUP a non-system diskette. The following procedure allows you to use
your system to duplicate non-system diskettes.

4-32

Procedure for Duplicating Non-system Diskettes with Two Disk Drives

1. Insert the system disk into drive 0 and toggle the RESET switch.

2. After the prompt character is displayed on the console, enter the follow-
ing command:

>DUP 1 0

3. The following error will be displayed along with an End-Of-Job message:

DUP ERROR
DUP EOJ

Now the DUP command program is resident in system memory and the system
diskette is not required for execution of the DUP command.

4. Insert the non-system diskette to be copied into disk drive 1.

5. Remove the system diskette from drive 0 and insert a blank diskette into
drive 0.

6. Enter the following command:

>SYS 1

7. Next enter the command:

>DUP 1 0

8. When the files on the diskette in drive 1 have been copied onto the blank
diskette drive 0, the following message will be displayed on the console:

DUP EOJ

DUP Error Responses:

1-Directory read error
2-Directory write error
6-Read error, DUP continues
7-Write error, DUP continues
9-Invalid drive number or system drive number
16-Input device assign failure
17-Output device assign failure
21-Channel assign failure

4-33

4.7.4 LDIR

[device name
LDIR [disk drive] [.] [I] file name/disk drive

PURPOSE

The LDIR command causes the contents of a floppy disk directory to be sent to
the specified device.

EXPLANATION

The LDIR command lists the contents of the disk directory that is mounted on

the specified disk drive. If the disk drive is not specified, the system disk
directory is listed. When a decimal point "." is specified as a parameter,
all of the SDOS system files will be included in the directory listing. When
a slash "/" is specified as one of the parameters, space allocation informa-
tion and file identification information are included in the listing.

Any valid output device name (CONO, LPT1, R232) is a valid DEVICE NAME entry

(see Table 4-1A and B). In addition, any valid file may be named as an output
device; however, you must specify the disk drive where the flexible disk with
that file is located. The listing of the directory to a file will overlay any
data in that file. 	A new file will be created if a file with the specified
name does not exist.

The diskette identification precedes the directory listing and a summary of

diskette sector usage follows it. The SDOS system file sector usage is in-
cluded in the summary, whether or not the H." option was specified.

DIR Error Responses

1-Directory read error
7-Device write error
8-Drive not specified for FILE NAME
10-Overlay load failure
15-Invalid output device
17-Output device assign failure

30-Invalid parameter

4-34

4.7.5 RENAME

RENAME bold file name/disk drive} .{new file name}
or
RENAME Idisk drive} ;diskette identifier}

PURPOSE

The RENAME command is used to:

1) rename a file

2) rename a diskette

EXPLANATION

Renaming a File

The first form of the RENAME command causes the name of a file on the speci-
fied disk drive to be changed. This form requires that a disk drive number be
specified with the OLDFILE name. A disk drive number may be specified with
the NEWFILE name, however, it must be the same as that specified for the
OLDFILE name. The following is a typical transaction.

>REN TEST/0 TEXT

REN EOJ

Renaming a Flexible Disk

The second form renames the diskette on the specified disk drive with the

character string IDENTIFIER. The IDENTIFIER is truncated if longer than 48
characters. The following is a typical transaction:

>REN 0 MASTER SYSTEM DISK
REN EOJ

The system diskette cannot be renamed from within a command file. To do so
results in an *REN* ERROR 18.

4-35

REN Error Responses

1-Directory read error
2-Directory write error
8-Drive not specified
9-Invalid drive number

12-Invalid file name
13-Input file not found
16-Input device assign failure
18-Device in use
30-Invalid parameter
31-Parameter required
32-Too many parameters
57-File name in use

4-36

4.7.6 COPY

input device name 	input device name 	 output device name
COPY input file name [/disk drive] input file name [/disk drive] ... output name [/disk drive]

PURPOSE

The COPY command is used to transfer data from one or more devices or files to

another device or file.

EXPLANATION

The COPY command transfers data from the input device or file to an output
device or file. More than one input device or file may be specified; however,
the output device or file may not be used as an input device or file.

Data is transferred from the input device or file to the specified output
device until an end-of-file condition is encountered on the input. 	If more
than one input device or file is specified, the data are concatenated in the

following manner:

1. The data from the first input device or file is transferred to the output
device or file until an end-of-file condition is reached.

2. The data from the second input device or file is transferred to the output
device or file and concatenated directly to the first set of data.

3. The data from the third input file or device is then transferred to the
output device or file, etc.

4. When the end-of-file condition is encountered in the last input device or
file the output device or file is closed.

When an ASCII file is being input from one of the system devices (CONI, TTYR,

or R232), the CTRL-Z character is interpreted as the end-of-file condition.

COP Error Responses

6-Input read error

7-Output write error
13-Input file not found

14-Not an input device
15-Not an output device
16-Input device assign failure
17-Output device assign failure
30-Parameter error
52-Invalid device name

4-37

4.7.7 PRINT and PRINTL

PRINT 	 [device 	 begin line number} {end line number}
PRINTL }file name [/disk drive]} file name [/disk drive] end line number

PURPOSE

The PRINT and PRINTL commands transfer lines of data from an input file to an

output device or file. The PRINTL command numbers each line upon output.

EXPLANATION

The PRINT and PRINTL commands transfer lines of data from the specified input
file to the specified output device or file. When the output device or file
is not specified, the data lines are printed to the line printer LPT1.

The line numbers must be greater than or equal to one and less than 32,768,
and BEGIN must be less than or equal to END. END line number must be greater
than or equal to BEGIN line number. When the line range is specified using
BEGIN and END, only the lines from BEGIN through END are output. For example,
when the first number is 4 and the second number is 7, then lines 4, 5, 6 and
7 are transferred from the specified file. 	If only one line number is speci-
fied, all lines from the first line in the file through the specified line are
transferred. When a line range is not specified the entire file is trans-
ferred.

When the PRINTL command form is used the lines are numbered as they are output.

PRN Error Reponse

6-Input read error
7-Output write error
13-Input file not found
14-Invalid input device

15-Invalid output device
16-Input device assign failure
17-Output device assign failure

30-Invalid parameter

4-38

4.7.8 DELETE

DELETE ifile name/disk drive} [file name/disk drive] ...

PURPOSE

The DELETE command is used to delete specified files from a diskette.

EXPLANATION

The DELETE command causes the file named to be deleted from the specified disk
drive. Each file specified must have a disk drive number associated with it.
[file name/disk drive]... indicates that more than one file can be specified
for deletion in a single command line.

Upon execution of the DELETE command, each file specified in the parameter
list is deleted from the directory of the flexible disk on which it resides.
The sector blocks allocated to the deleted file are released for reallocation.

If an error occurs, command processing aborts; however, all files processed up
to the time of the error have already been deleted.

DEL Error Responses

2-Directory write error
8-Drive not specified
9-Invalid drive number
12-Invalid file name
13-File not found
18-Device in use
21-Channel assign failure
30-Invalid parameter

31-Parameter required
61-File in use

4-39

output device name
CMPF {file name 1 [/disk drive]} {file name 2 [/disk drive]} output file name [/disk drive] [mode]

4.7.9 CMPF

PURPOSE

The CMPF command is used to compare two files according to the compare mode
specified and list an exception report on the specified device. Mode may be:

1) B-Binary
2) A-ASCII

EXPLANATION

The CMPF command compares the first file specified with the second file. An
exception report lists any differences on the OUTPUT DEVICE. 	If a device is
not named, the exception report is sent to the system console, CONO. Any
output device name (CONO, LPT1, R232) is a valid entry. In addition, any
valid file may be named an OUTPUT DEVICE. The output to a file overlays any
data in that file. If a file with the specified name does not exist, a new
file is created.

ASCII mode compares the files line by line, while BINARY mode compares them
byte by byte. The default is binary mode.

Independent of the MODE specified, the compare continues until an end-of-file
is encountered in one of the files. Then, all remaining data in the longer
file is output. A double asterisk ** is printed in lieu of data for the
shorter file.

The disk drive number for either file is optional, but if either file is not
stored on the system disk then the drive number must be specified.

The exception report begins with the two file names and ends with a total
exception count in Hexadecimal.

ASCII Mode Compare

The first file named is compared line by line with the second file named.
When an exception is found, the line number of the exception line is output
followed by the line data from the first and second files, respectively.

4-40

Example:

The following data is contained in two files which reside on a diskette in

disk drive 1.

File one:

This text file describes the
operation of the text editing
program 'edit'
(EOF)

File two:

This text flie describes the
operation of the text editing
program 'edit'
(EOF)

The differences in these files are underlined. To compare the files line
by line enter:

>CMPF,ONE/1,TWO/1„A

An exception report will be listed to CONO as follows:

F1= ONE

F2= TWO

Li ne 1

This text file describes the
This text flie describes the

TOTAL EXCEPTIONS = 0001
CMP EOJ

BINARY Mode Compare

The first file named is compared byte for byte with the second file named.
When exceptions are found, they are listed on the output device, along with

the byte number in Hex into the file where the exception was found.

Example:

Using the previous example, suppose you preferred to do a binary compare
of the two files. Enter the command:

4-41

>CMPF,ONE/1,TWO/1

In the first line of the files, two letters in the word "file" do not com-

pare.

The following exception report is output:

F1= ONE
F2= TWO

BYTE 	F1 	F2

000C 	49 	52
000D 	52 	49

TOTAL EXCEPTIONS = 0002
CMP EOJ

Comparing Two Load Modules

When a BINARY mode compare is requested, both files are checked to see if they
are Load modules before the actual compare begins. This is done by looking
for a proper Load module header at the beginning of each file. If these
checks indicate both files are Load modules, the module identifications are
printed below the file name header on the exception report. In Sector 0 the
applicable Load module data is compared, then all bytes of successive sectors
are compared.

In rare instances, the files may be determined to be Load modules, but the
entire first sector (Sector 0) is compared without encountering an "End of

.Load" code. When this happens, the compare is restarted and done as a normai
binary mode compare.

CMP Error Reponses

6-Device read error
7-Device write error
10-Overlay Load failure
13-Input file not found
14-Invalid input device
15-Invalid ouput device
16-Input device assign failure
17-Output device assign failure
30-Invalid mode
31-Parameter required

4-42

4.7.10 DFIL

[output device name
DFIL{file name [/disk drive]} output file name [/disk drive] [start byte] [end byte]

PURPOSE

The DFIL command is used to dump a file in Hexadecimal format to the specified
device.

EXPLANATION

The DFIL command dumps a file to the specified ouput device or file name. If
an output device is not named, the file dump is listed on CONO.

For readability, the output is formatted in blocks of 128 bytes of data, six-
teen data bytes per line.

ASCII interpretation of the Hex data is printed to the right of each data
line. Bytes which are not ASCII characters are interpreted as a period.

The file is dumped according to the following rules.

1) The file is dumped from beginning of file if START is not specified.

2) The file is dumped to end-of-file, if END is not specified.

3) START byte and END byte must be valid Hexadecimal numbers in the range
0000 through FFFF.

4) START must be less than or equal to END.

5) If START equals END only one byte is output.

6) If END byte is greater than the file size, the dump continues until an
end-of-file is reached.

Example 1

To dump the entire contents of the file named SAM, of H'91' bytes, in disk
drive 1 to the line printer, enter the command:

> DFIL,SAM/1,LPT1

4-43

Output is produced as follows:

Example 2

FILE = SAM

012 3 4 5 6 7 8 9 A,BCDEF

0000
54 48 49 53 20 49 53 20 41 20 46 49 4C 45 20 54

	
THIS IS A FILE T

4F 20 44 45 40 4F 4E 53 54 52 41 54 45 20. 54 48
	

O DEMONSTRATE TH
45 20 44 46 49 4C 20 42 4F 40 40 41 4E 44 OD OD

	
E DFIL COMMAND..

00 20 00 20 00 49 54 20 41 4F 4E 54 41 49 4E 53 	. 	CONTRINS
20 41 20 54 4F 54 41 46 20 4F 46 20 39 31 20 42

	
A TOTAL OF 91 B

59 54 45 53 26 20 4E 55 4D 42 45 52 45 44 20 46
	

YTES, NUMBERED F
52 4F 40 20 30 20 54 4F 20 39 30 2E OD 4C 41 53

	
ROM 0 TO 90.. LAS

54 20 46 49 4E 45 20 20 20 41 42 43 44 45 46 47
	

T LINE - ABCDEFG

0080
48 49 4R 48 46 40 4E 4F 50 51 52 53 54 55 56 57 	HIJKLMNOPQRSTUVW
OD

To dump a portion of this file, from byte H'09' through byte H'83', enter
the command:

> DFIL,SAM/1,LPT1,9,83

Output is produced as follows:

FILE .--- SAM

0 1 2 3 4 5 6 7 8 9R8CDEF

0009
20 46 49 46: 45 20 54
	

FILE T
4F 20 44 45 40 4F 4E 53 54 52 41 54 45 20 54 48

	
0 DEMONSTRATE TH

45 20 44 46 49 46 20 43 4F 40 4D 41 4E 44 00 OD
	

E DFIL COMMAND..
00 2 00 20 00 49 54 20 43 4F 4E 54 41 49 4E 53 	. . . IT CONTRINS
20 41 20 54 4F 54 41 46 20 4F 46 20 39 31 20 42

	
A TOTAL OF 91 8

59 54 45 53 26 20 4E 55 40 42 45 52 45 44 28 46
	

YTES, NUMBERED F
52 4F 4D 20 3020 54 4F 20 39 10 2E OD 46 41 53

	
ROM 0 TO 90. . LAS

54 20 46 49 4E 45 20 2D 20 41 47 47 44 45 46 47
	

T LINE - ABCDEFG

0080
48 49 4R 48
	

HIJK

4-44

) 	
DFL Error Responses

6-Device read error
7-Device write error
10-Overlay load failure
13-Input file not found
14-Input is not a valid file name
15-Invalid output device
16-Input device assign failure
17-Output device assign failure
31-File name parameter required
32-Too many parameters
35-Invalid start address
39-Invalid Hex character in START or END.

)

)

4-45

4.8 SYSTEM UTILITY COMMANDS

The following utility commands allow you to access and manipulate slave memory

and your prototype memory.

COMMAND NAME 	 DESCRIPTION

MOVE 	 Move a block of data in slave or user

prototype memory.

FILL 	 Fill slave or user prototype memory with

a Hex string constant.

READ 	 Read a memory location or data bus.

WRITE 	 Write to a memory location or data bus.

UPR 	 Relocates slave-resident debug utility
program.

4-46

4.8.1 MOVE

MOVE {source-destination} j start source address} {end source address[Idestination address}

PURPOSE

The MOVE command moves the block of data defined by the START and END source
addresses to the DESTINATION address.

EXPLANATION

The MOVE command moves a block of data from SOURCE memory to DEST memory
according to the SOURCE-DESTINATION parameter table below.

SOURCE-DEST 	 ACTION

CC 	 moves a block of data within TWIN slave
memory

UU 	 moves a block of data within user memory

CU 	 moves a block of data from TWIN slave
memory to user

UC 	 moves a block of data from user memory to
TWIN slave memory.

The two characters, C and U, of the SOURCE-DEST parameter must be juxtaposed.

The START, END, and DEST addresses must all be hexadecimal numbers in the
range 0000 through FFFF. Additionally, START must be less than or equal to
END.

All parameters are required.

MOV Error Responses

30-Invalid SOURCE-DEST parameter
31-Parameter required
32-Too many parameters
34-START > END or Invalid DEST address
35-Invalid START address
36-Invalid END address
59-Memory write error
68-Attempt to clobber Debug utility routines.

4-47

4.8.2 FILL

FILLIstart address[lend address} Ihex-string[

PURPOSE

The FILL command fills an area of slave or user prototype memory with a Hexa-
decimal string constant.

EXPLANATION

The FILL command fills either TWIN slave memory or user prototype with mul-
tiples of the specified HEX-STRING constant. The fill function is executed
according to the current ICE mode:

ICE MODE 	 ACTION

OFF 	 fill TWIN slave memory
1

2 	 fill user prototype memory

The START and END addresses must be entered as hexadecimal numbers in the
range 0000 through FFFF, and START must be less than or equal to END.

If the specified memory area to fill is not an integral multiple of the HEX
STRING length then the HEX STRING is truncated at the END address and a warn-
ing error is output to the system console. HEX STRING must be an even number
of hexadecimal digits, not less than 2 nor more than 68 characters in length.

All parameters are required.

FIL Error Responses

30-Invalid parameter
31-Parameter required
32-Too many parameters
34-START address > END address
35-Invalid START address
36-Invalid END address
39-Invalid Hex character
59-Memory write error
68-Attempt to clobber Debug utility routines

4-48

4.8.3 READ

{memory address
READ 2650 read instruction type [output option]

PURPOSE

The READ command reads from either a memory address or data bus in the user
prototype system.

EXPLANATION

The READ command is used to generate and execute a small slave program in
order to read a user memory location or to execute one of the three 2650 Input

Instructions as follows:

REDC,R0
REDD,R0
REDE,R0 Device-Address

The device address must be specified if you select the REDE instruction.

Note that the READ command does not operate with the TWIN common memory.

You may elect to perform the read only once, and display the data bus or
memory contents; or you may elect to perform the read continually with no data
displayed. 	In the case of a continuous read, the results may be monitored
with an oscilloscope since no data is displayed.

The OPTION parameter selects either a one-time or continuous read as follows:

* - continuous read
device name - one-time read with data displayed on the specified device

OPTION default is a one-time read with the data output to CONO. Use the ESC
key to terminate continual read mode.

Read Memory Location

To READ a memory location, enter the memory address as the first parameter and
select the continuous read or a one-time read output device.

4-49

Example:

The comand

>READ,FFF,LPT1

causes the contents of address FFF to be read once and its contents witten on
the line printer.

Read from Data Bus

To READ from the data bus, enter the 2650 INSTRUCTION TYPE shown below:

2650 Instruction 	 Enter Instruction Type

REDC,R0 	 RC
REDD,RO 	 RD
REDE,R0 Device Address 	RE-dd

where:

0 	s dd 5 EFH or
F8H 5_ dd "25 FFH

Note that device addresses FOH through F7H are reserved for SDOS super-
visor calls (SVCs).

As for read memory, you may select either the continuai read or one-time read
with output displayed.

Example:

The command

>READ,RE-F8,*

causes device address F8 to be read continually via the REDE,R0 F8 instruc-
tion. No data is displayed. The read will repeat until you depress the ESC
key.

RDW Error Responses

15-Invalid output device
17-Output device assign failure
27-Slave CPU is in use
30-Invalid parameter
31-Address parameter required
34-Invalid memory address
56-Invalid device address or FO-F7 reserved for SVCs

4-50

4.8.4 WRITE

{ memory address
WRITE 2650 write instruction type [option] [hex-string]

PURPOSE

The WRITE command writes a string of hexadecimal data to either a memory loca-
tion or data bus in the user prototype system.

EXPLANATION

The WRITE command is used to generate and execute a small slave program in
order to write a specified HEX-STRING to a user memory location or to the user
data bus via one of the three 2650 Output Instructions as follows:

WRTC,R0
WRTD,R0
WRTE,R0 Device-Address

The device address must be specified if you select the WRTE instruction.

Note that the WRITE command does not operate with TWIN common memory.

You may elect to perform the output of the HEX-STRING data or single default
data byte only once; or you may elect to perform the write continually.

The OPTION parameter selects either a one-time or continuous write as follows:

* - continuous write of HEX-STRING
1 - write HEX-STRING one time

OPTION default is a one-time write. Use the ESC key to terminate continual
write mode.

HEX-STRING can be any even number of hexadecimal digits up to a maximum of 60
digits. The default value of HEX-STRING is FFH (all ones).

Execution of the WRITE instruction must be monitored with an oscilloscope.

Write to Memory Location

To WRITE to memory location enter the memory address as the first parameter,
and select the option as desired. If you specify a HEX-STRING of length
greater than 2 digits, the data will be written beginning at the specified
memory address and continue through successive memory addresses until all of
HEX STRING has been written.

4-51

Continuous write begins each iteration at the specified memory address.

Example:

The command

>WRITE,100,*,FFOO

writes the data FFH and 00H to memory addresses 0100H and 0101
H'

respectively. The sequence is repeated until you depress the ESC key.

Write to the Data Bus

To WRITE to the data bus, enter the 2650 INSTRUCTION TYPE as shown below:

2650 INSTRUCTION 	 ENTER INSTRUCTION TYPE

WRTC,R0 	 WC
WRTD,R0 	 WD
WRTE,R0 Device Address 	 WE-dd

where

0 S dd EFH

F8h -5 dd 5 FFH

Note that device addresses FOH through F7H are reserved for SDOS super-
visor calls (SVCs).

As for write memory, you may select either the continual write or one time
write. If you specifiy a HEX-STRING of length greater than 2 digits, the
string is written, a byte at a time, according to INSTRUCTION TYPE. Continu-
ous write simply loops through HEX-STRING until the ESC Key is depressed.

Example:

The command

>WRITE,WE-F8,1,0102040816

executes the 2650 instruction WRTE,R0 F8 once for each byte in the HEX-STRING.

The command

> WRITE,WE-F8,*

executes the 2650 instruction WRTE,R0 F8 continually until you depress the
ESC key. In this example, the default HEX—STRING value FFH is output.

1

4-52

RDW Error Responses

27-Slave CPU is 'in use
30-Invalid parameter
34-Invalid memory address
43-Invalid HEX-STRING
56-Invalid device address or FO-F7, reserved for SVCs

4.8.5 UPR

UPR [address]

PURPOSE

The UPR command, Utility Program Relocate, moves the SDOS slave-resident debug

utility programs from the top 256 bytes of slave memory to the specified slave
memory address.

EXPLANATION

So that the user can have access to the highest 256 bytes of slave memory, the
UPR Command is provided to move the debug utility programs to another area of
slave memory. ADDRESS must be evenly divisible by 256.

When the utility programs are moved out of the initial memory block they are
not write-protected at the new location. If no ADDRESS parameter is entered,
the utility programs are moved to the initial memory location in the top-most
256-byte slave memory block with write protect. Refer to Section 4.1.4, Debug
Utility Programs.

Note that if the default location is actually entered for ADDRESS, the pro-
grams are not protected.

CAUTION

At no time are the utility programs write-
protected against the LOAD or XEQ commands.

UPR Error Responses

6-Cannot read utility programs from diskette
34-Invalid Hex address or syntax. error
35-ADDRESS is not 256 aligned or ADDRESS is greater than memory size

58-SDOS system failure

4-54

4.9 OBJECT PROGRAM UTILITIES

The commands in this section are used to move object code between program
memory and flexible disk storage or a perpheral device. The object code may
be stored on a flexible disk either in binary or hexadecimal format. The
object code is loaded into program memory in binary format.

COMMAND NAME 	 DESCRIPTION

WHEX
	

Converts binary code to hexadecimal
format and writes it on the diskette or
to a device.

RH EX
	

Reads hexadecimal formatted code, con-

verts it to binary code and loads the
binary code into slave memory.

MODULE 	 Creates a binary object module on disk-

ette or a device from binary code in
slave memory.

WSMS 	 Writes a block of slave memory in SMS
format to a diskette or a device.

CSMS 	 Translates an SMS file and compares it
with slave memory.

SMS format is used by Signetics for the generation of PROMs and is described
in Appendix D.

Hexadecimal format is described in Appendix C.

4-55

4.9.1 WHEX

PURPOSE

The WHEX command converts binary code in slave memory to hexadecimal format
and writes the hexadecimal code blocks on the specified device. Hexadecimal
format is described in Appendix C.

EXPLANATION

The WHEX command program causes an absolute hexadecimal format file to be
written from the binary code in slave memory to the diskette or device.
ADDRESS 1 and ADDRESS 2 are the addresses of the lower and upper bounds
respectively, of the user program in slave memory and must be entered in pairs
separated by a pair of commas. The ADDRESSES 1, 2, and 3 are to be entered in
hexadecimal. ADDRESS 3 is an optional starting address.

The DEVICE is an optional output device or file. When the DEVICE is speci-
fied, the starting ADDRESS 3 must be specified. When the DEVICE is not speci-
fied, the output is to the console output device, CONO.

The WHEX command writes the data beginning with ADDRESS 1 through ADDRESS 2
.for each ADDRESS 1,2 pair present in the parameter list.

NOTE

Two commas are required between address
pairs if multiple address pairs are speci-
fied.

WHX Error Responses

7-Device write error
15-Invalid output device
17-Output device assign failure
30-Invalid parameter

4-56

4.9.2 RHEX

[device
RHEX [/bias amount] file name [/disk drive]

PURPOSE

The RHEX command reads hexadecimal formatted code from the diskette or device,

converts it to binary code and loads the binary code into slave memory.

EXPLANATION

The RHEX command loads the absolute hexadecimal code into slave memory. The
absolute hexadecimal code is read into memory from the specified device or

file. The DEVICE defaults to the teletype paper tape reader TTYR.

The BIAS amount is used to alter the absolute load address for the file enter-

ed as a signed hexadecimal address constant. When the sign is not specified,
the bias amount is assumed to be positive. The default value for the BIAS
amount is zero. When BIAS is specified, the initial load address is altered
by the BIAS amount.

The program start address given at the end of the object file will be ignored

by SDOS. It must be entered as part of the GO command when execution of the

program is requested.

RHX Error Responses

6-Device read error
14-Invalid input device
16-Input device assign failure
33-Bias parameter error
40-Invalid input format

4-57

4.9.3 MODULE

MODULE file name [/disk drive] Jaddress 1} {address 2} {address 3} [module identifier]

PURPOSE

The MODULE command writes binary code in binary load module format onto the
diskette from slave memory.

EXPLANATION

The MODULE command writes binary code into the specified file from slave
memory. ADDRESS 1 and ADDRESS 2 are the addresses of the lower and upper
bound respectively of the user program in slave memory. ADDRESS 2 must be
greater than or equal to ADDRESS 1. ADDRESS 3 is the starting execution
address of the program. The ADDRESSES 1, 2, and 3, are to be entered in hexa-
decimal. The load module is preceded by a one sector header which contains
the memory bounds of the ADDRESSES 1 and 2 of the binary object module and its
starting address, ADDRESS 3. This starting address is loaded by LOAD, allow-
ing you to execute the program by simply typing GO.

MOD Error Responses

7-Device write error
10-Overlay load failure
12-Invalid file name
32-Too many parameters
34- Inval i d address

4-58

4.9.4 WSMS

[
file name [/disk drive]

WSMS [address] device 	
i

PURPOSE

The WSMS command outputs a 512-byte block of slave memory in SMS format.

EXPLANATION

ADDRESS specifies the first location of memory to be written. The default
value of ADDRESS is 0. DEVICE specifies the output device or disk file to
which the SMS data is to be written. The default value of DEVICE is CONO.
SMS format is described in Appendix D.

SMS Error Responses

7-Device write error
15-Invalid output device
21-Channel assign failure
30-Invalid parameter
35-Invalid address

4-59

4.9.5 CSMS

i file name [/disk drive]
CSMS [address] device

PURPOSE

The CSMS command reads a file that is written in SMS format from DEVICE,
translates the data to binary, and compares the data with slave memory.

EXPLANATION

ADDRESS refers to the first location in slave memory that will be compared
with the SMS file. The default value of ADDRESS is 0. DEVICE is the input
device or disk file where the SMS data resides. The default value of DEVICE
is TTYR, the teletype paper tape reader. CONI cannot be the input device.

The SMS file is compared with a 512-byte block of memory. If an SMS byte and
the contents of a memory location are not equal, the memory location will be
displayed on the console. SMS format is described in Appendix D.

SMS Error Responses

6-Device read error
13-Input file not found
14-Invalid input device
21-Channel assign failure
30-Invalid parameter
35-Invalid address

4-60

4.10 COMMAND FILES

SDOS provides the user with the capability of executing a sequence of SDOS

commands by issuing a single command. This capability is implemented through
the use of COMMAND FILES. A COMMAND FILE consists of a sequence of SDOS com-
mand lines. When the name of the command file is used as an SDOS command,
SDOS first determines that the command file name is not one of the basic SDOS
commands. It then searches the systeM directory for the file name. When the
file is located, it treats the first line as an SDOS command and executes it.
Then the second line is executed, and so forth, until an end-of-file condition
is reached on the command file.

Example:

Suppose the Editor was used to create the following file named LISTALL on the
diskette in Drive 0. LISTALL contains the following primary SDOS commands.

LDIR 0 LPT1

LDIR 1 LPT1
LDIR 2 LPT1
LDIR 3 LPT1

If "LISTALL" is entered as an SDOS command, SDOS will locate LISTALL on the
diskette in drive 0 and execute the first line as an SDOS command. This will
result in the directory of the diskette on drive 0 being printed on the line
printer. Execution of the next three lines will result in the directories of
the diskettes on drives 1, 2 and 3 being printed on the line printer.

Parameters

Parameters may be entered in the command line with the command file filename.

Command file parameters are positional and are passed to a command file in the
same manner in which parameters are passed to a subroutine via a subroutine
call. That is, the body of the command file contains primitive SDOS commands
with formal parameters rather than the actual parameter values. Then, the
actual parameters are entered along with the command file filename on the sys-
tem console.

Formal parameters are identified by a $ followed by an integer. The integers
correspond to the order in which the parameters are entered in the command
file request.

Example:

LISTALL is changed to:

LDIR 0 LPT1 $1 	$2
LDIR 1 LPT1 $1 	$2
LDIR 2 LPT1 $1 	$2
LDIR 3 LPT1 $1 	$2

A command file invocation to execute this command file is

>LISTALL . /

4-61

The '.', the first parameter, replaces all the $ls and the '/', the second
parameter, replaces all the $2s in the LISTALL file. This results in execu-
tion of the following command stream execution:

LDIR 0 LPT1
LDIR 1 LPT1
LDIR 2 LPT1
LD'IR 3 LPT1

If the command:

>LISTALL

were entered, the '/' would replace all the $ls in the LISTALL file, but the
$2s will be replaced with blanks, resulting in execution of the command stream:

LDIR 0 LPT1
LDIR 1 LPT1
LDIR 2 LPT1
LDIR 3 LPT1

Note that if a required parameter represented by a $n is omitted when invoking
the command file, an error may occur.

Command File Control

The SDOS commands available for use in conjunction with command files and a
general description of the command file invocation are described on the fol-
lowing pages.

COMMAND NAME

KILL

TYPE

DESCRIPTION

Pref aces all comments.

Aborts the command file on a system com-
mand error.

Prints the SDOS commands in a command
file as they are interpreted.

4-62

4.10.1 Command Description

filename [/disk drive] [parameter 1 ... parameter n]

PURPOSE

The command file FILENAME is entered as an SDOS command to invoke the command
file.

EXPLANATION

The command file is identified by a single name that must conform to the file
naming conventions specified in Section 4.2.2, File Names.

When the command file is not resident on the system disk the disk drive must
also be specified. This value defaults to the system disk.

Parameters specified in the command line may be used by the system commands
that make up the command file body. For example, you may specify a program
file name as a parameter in the command line and then have several system com-
mands within the command file use or modify that file. Later you can have

that same command file perform the same action on another program file. Para-
meters omitted from the sequential parameter list must be indicated by two
consecutive commas. Parameters omitted from the end of the parameter list may
be indicated by a number of commas one greater than the number of omitted
parameters. (This is only necessary if the omitted parameter number refer-
enced in an SDOS command inside the procedure has additional data after it
which must be included in the command line for proper command execution.)

Command files cannot be nested but they can be chained. That is, if the last
system command in a command file is the name of another command file, the com-
mand file being executed is terminated and the next command file is started.
The parameters are passed from one command file to another in the same way

they are passed to the system commands within the command file.

If a device read error is encountered in a command file, the entire file exe-
cution will be aborted, except when the value of the KILL switch is OFF. (See
Section 4.10.3).

A maximum of six disk files instead of the normai seven can be assigned to a
slave program while a command file is in progress.

4-63

4.10.2 * Comment

* (The Asterisk) [comment]

PURPOSE

The asterisk * is used to insert comments into the job flow of the command
file.

EXPLANATION

The asterisk is entered into the first character position and must be followed

by a space. The comment inserted is printed on the console as its turn comes
up on the job flow. The print out of the comment may be inhibited by invoking
the TYPE OFF command.

Comments must be entered as separate lines and not entered on the same line as
a system command.

* Error Responses

DOS ERROR 3 - The * is not followed by a space.

4-64

4.10.3 KILL

ION
KILL OFF

PURPOSE

The KILL command causes termination of command file execution upon detection
of an error in one of the system commands.

EXPLANATION

After the KILL ON command has been invoked, either from the keyboard or within

the command file, a command file will be terminated if an error is encountered
during the execution of any of the system commands within that file.

The KILL OFF command allows execution of a command file to continue after an

error occurs, starting with the next system command in the file. Error mes-
sages are printed on the system console.

System level commands, those flagged by the *DOS* error ID, are not screened

by the kill flag, and always cause termination of the command file.

The KILL command defaults to ON at power up and reset.

KIL Error Responses

30-Invalid parameter

31-Parameter required

4-65

4.10.4 TYPE

J ON
TYPE OF Ff

PURPOSE

The TYPE command causes each system command in the command file to be printed
on the system console as the command is interpreted.

EXPLANATION

After the TYPE ON command has been invoked, either from the keyboard or within

the command file, the command line for each system command within the command
file is printed on the console at the start of the command execution.

The TYPE OFF command inhibits the printing of the command line and comments
and only error messages are output.

The system defaults to TYPE ON at power-up and reset.

TYP Error Responses

30-Invalid parameter
31-Parameter required

4-66

4.11 STANDARD SDOS COMMAND AND UTILITY FILES

Several standard files are provided to ease use of the system. They are:

FILE NAME 	TYPE 	DESCRIPTION

COPYSYS 	Command File 	Copies the operating system.

MAK3ORS 	Command File 	Reconfigures the operating system with
the RS232 driver.

MAK30PT 	Command File 	Reconfigures the operating system with

the high speed paper tape driver.

MAK3OLP 	Command File 	Reconfigures the operating system with
the Printronix 300 line printer driver.

R232;M
HSPT;M 	Utility Files 	Load modules for the optional drivers.
LPT2;M

EQUATES 	Utility File 	Contains 	standard 	assembler 	symbols
equates.

4-67

4.11.1 COPYSYS

COPYSYS [/disk drive] disk drive 1} Jdisk drive 2}

PURPOSE

COPYSYS is a command file that copies the SDOS operating system from one disk-
ette to another.

EXPLANATION

The COPYSYS command causes the system files on the diskette mounted on DISK
DRIVE 1 to be copied to the diskette on DISK DRIVE 2. The COPYSYS command is
entered after the SDOS prompt character > is displayed. The following example
illustrates the use of this command to copy the SDOS system from a disk on
disk drive 0 to a disk on disk drive 1:

COPYSYS 0 1

•

•

:>

The underlined portion is entered from the keyboard. When execution of the

.command has been completed, the following files have been copied over:

• The resident SDOS binary load module.
• All SDOS command overlays.
• All SDOS slave jobs, i.e., the assemblers and the editor.
▪ The COPYSYS command file.
• The standard SDOS command, utility files, and system readiness

test (Appendix E).

The operating system should be copied onto a diskette before any other files
to achieve the most rapid system response to commands. This allocates the
system files to the tracks on the outside of the disk and minimizes read head
movement when the commands are brought into memory.

NO TE

The file SDOS must reside on tracks 0
through 4 of a diskette to be bootable.

4-68

4.11.2 Configure Optional Drivers

MAK3ORS
MAK3OPT [/disk drive] Isource disk drive[{destination disk drive} {SDOS version} {date}
MAK3OLP

PURPOSE

The MAK30xx command files reconfigure the SDOS operating system for one of the

optional drives.

EXPLANATION

These command files reconfigure the SDOS operating system with one of the
optional drivers according to the table below.

Driver Load

Comm and File 	Driver 	Device Name 	Module Name

MAK3ORS 	RS232 	 R232 	R232;M
MAK3OPT 	High Speed 	HSPT 	HSPT;M

Paper Tape Reader
MAK3OLP 	Printronix 300 	LPT2 	LPT2;M

Line Printer

The command file reads SDOS into slave memory, links the selected driver load

module into SDOS, enters the device name into the system Device Definition
Table, and creates a new SDOS load module file on the specified DESTINATION
disk drive.

SOURCE disk drive specifies the drive on which SDOS and the drive object

modules reside. DESTINATION disk drive is the drive number of the diskette to
which the reconfigured SDOS is written.

SDOS Version and Date are identification fields which you may use to identify

the new SDOS load module.

When SDOS is reconfigured with an optional driver, the associated device name

is a reserved system device name in that version of SDOS only. If you recon-
figure SDOS again and write it to the same diskette, then the new device name
replaces the first one as a reserved name.

4-69

The new reconfigured SDOS must be booted in order to use the driver and de
name.

The digits '30' in the command file filename correspond to the version of SDOS
on which the command files operate. These command files operate on SDOS ver-
sion 3.0.

4-70

* STANDARD SYMBOL DEFINITION THIS FILE MAY BE APPENDED TO THE

FRONT OF ANY USER'S SOURCE DECK
* REGISTER EQUATES
R8 	EQU 	8 	REGISTER 0
R1 	EQU 	1 	REGISTER 1
R2 	EQU 	2 	REGISTER 2
R3 	EQU 	3 	REGISTER 3
* COWITION CODES
P

2
LT
EQ
GT
UN

EQU 	1
EQU 	8
EQU 	2
EQU 	2
EQU 	0
EQU 	1
EQU 	3

* PSW LOMER EQUATES
CC 	EQU 	H'88'
IDC EQU H'28'
RS 	EQU 	H'18'
WC 	EQU 	H' 1.:
OVF EQU H'84'
COM EQU H'82'
C 	EQU 	H'81'
* PSW UPPER EQUATES
SENS EQU
FLRG EQU H'40'
II 	EQU 	H'28'
SP 	EQU 	H'87'
* END OF EQUATES

EJE

POSITIVE RESULT
ZERO RESULT
NEGATIVE RESULT
LESS THAN
Eatnt TO
GREATER THAN
UNCOICTIOWL

CONDITIONAL CODES
INTERDIGIT CARRY
REGISTER BANK
1=WITH B=WITHOUT CARRY
OVERFLOW
1=LOGIC 0=ARITHMETIC COMME
CARRYIBORROW

SENSE BIT
FLRG BIT
INTERRUPT INHIBIT
STACK POINTER

4.11.3 EQUATES

The EQUATES fi le (Figure 4-1) is an assembly language source file which
defines all of the standard assembler symbols for the 2650 registers, PSW,
condition codes

	
This file may be appended to the beginning of any assembly

language source file before assembly.

Figure 4-1. EQUATES File

4-71

ca

0

0

CHAPTER 5

THE TEXT EDITOR

5.0 INTRODUCTION

The major function of the TWIN Text Editor is to create new source programs or

to change existing source programs. The Text Editor is also used for the cre-
ation and modification of COMMAND FILES. The Editor performs these functions
by processing command lines entered by the user. Each command line specifies
one action or a series of actions for the Editor to undertake, such as enter-
ing new source lines or searching the file for a specified string.

The Editor will be discussed by examining the SDOS command EDIT, presenting a
sample edit, detailing all the Editor commands, and listing all the messages
which the Editor may display to the operator.

The Editor resides in slave memory and occupies approximately seven thousand

bytes of the memory. The remainder of the slave memory is available for the
text that is being worked on. This is approximately 150 60-character lines in
a system with 16K bytes of slave memory..

Throughout this discussion, there are two terms and a keyboard input conven-
tion which are used. These are:

Buffer

(or Workspace):

Line Pointer:

The buffer is the slave memory area that contains the text
that the Editor operatel on. Data is written into and read
from the buffer by the Editor. The buffer can be seen as
having a top (or first) line and a bottom (or last) line.
The Editor can operate on any line in the buffer. In this
chapter, the terms workspace and buffer are used inter-
changeably.

Data in the buffer is edited by examining, changing, in-

serting and replacing lines. The Editor keeps track of

which line the operator is working on by keeping a pointer
at the current line.

This symbol will indicate the RETURN key.

If you are familiar with Editors, the section on the EDIT command, Section

5.1, the detailed description of the commands, Section 5.3, and the Editor
messages, Section 5.4, will be most helpful.

If you are not familiar with Editors, Section 5.2, which describes a typical

edit session, will be helpful in illustrating the use of the Editor commands.

5-1

5.1 THE EDIT COMMAND

You start the Editor with the SDOS EDIT command. This command has three forms:

1) EDIT INFILENAME OUTFILENAME
2) EDIT FILENAME
3)- EDIT

Form 1

INFILENAME designates the PRIMARY INPUT file and OUTFILENAME designates the
PRIMARY OUTPUT file. The PRIMARY INPUT file will be the default file in any
Editor command that asks for data from the disk. The PRIMARY OUTPUT file will
be the default file in any Editor command that writes data to the disk. 	If
INFILENAME is the same as OUTFILENAME, the file will be edited to itself. A
temporary work file to be used as OUTFILENAME is created by changing the first
character of INFILENAME to an *. When you finish your edit session,
INFILENAME is deleted, and then the temporary work file is renamed
INFILENAME. For example, if:

EDIT DATA1 DATA1 ®

is requested, DATA1 is the input file, and *ATA1 is the temporary output
file. After you complete your edit session, DATA1 is deleted, then *ATA1 is
renamed DATA1. In the event of disk read or write errors during the edit ses-
sion, both the DATA1 and *ATA1 files will remain available to you.

Form 2

The interpretation of FILENAME is based on whether it is a new file or an
existing file. 	If FILENAME is an existing file, FILENAME is edited to itself
as in the previous example of EDIT DATA1 DATA1. 	If FILENAME is a new file,
then FILENAME designates the PRIMARY OUTPUT file, and there is no PRIMARY
INPUT file. Since there is no PRIMARY INPUT file, you may not input from the
default file, so an ALTERNATE INPUT file must be specified if disk reads are
requested.

Form 3

There is no PRIMARY INPUT file and no PRIMARY OUTPUT file. If you desire to
input or output data, ALTERNATE INPUT or ALTERNATE OUTPUT files must be speci-
fied in the command.

5-2

In all cases, the Editor will respond with an identifying message and then
present its prompt character, the asterisk *, to indicate it is ready to
accept commands.

You may not start the Editor while a COMMAND FILE is active under SDOS. The
EDIT request will be rejected if an attempt is made to do so.

NOTE

While the Editor is executing, the special
SDOS keys, ESC and SPACE BAR, retain their
special functions. Consult Section 4.4 for
an explanation of their use.

5-3

5.2 SAMPLE EDIT SESSION

Let us go through an example of editing. Supposé you have conceived and coded
the 2650 program in Figure 5-1 and wish to create a new file, DADDSB, which
will contain the source program data. Start the Editor program by typing:

>EDIT DADDSB/0 ®
This will load Edit into slave memory and begin execution. The Editor will
display:

EDIT VER X.Y
NEW FILE
*

The last * is the Text Editor prompt character, which indicates that the
Editor is ready to accept commands. Figures 5-2 through 5-7 are hard copy
equivalents of the Edit sessions that will be described.

*DOUBLE PRECISION ADD. A IN RO, Rl. B IN R2,R3
*ON RETURN, A+B IS IN R2,R3
*

DADD STRR,R1 DAR1
ADDR,R3 	DAR1
PPSL 	WC
ADDZ 	R2
STRZ 	R2
CPSL 	WC
RETC,Un

DAR1 RES 	1 *

Figure 5-1. EDIT Sample Double Precision Add

5-4

The first command entered, line 1 of Figure 5-2, is the TAB command (the Set
TAB Character Command). The command, TAB ., sets the period '.' as the TAB
character. This gives the '.' a special meaning, that when '.' is entered,
the Editor is requested to fill the buffer with spaces until the next TAB
stop. This feature will be discussed later.

The Editor has two basic modes.

1. EDIT - any of the EDIT functions may be performed.
2. INPUT - text may be entered, but no edits performed.

If you desire to enter more than one or two lines of data, it is desirable to
enter the input mode. Since you desire to enter all of the source program at
one time, the input mode should be entered. To enter the input mode, press I
and then RETURN (line 2 of Figure 5-2). The Editor acknowledges this command
by displaying "INPUT:" to remind you of its mode (line 3 of Figure 5-2). You
may then enter the source program (lines 4-14 of Figure 5-2). As can be seen,
errors have occurred (lines 9 and 13 of Figure 5-2). To change from the input
mode back to the edit mode, enter a null line by pressing RETURN twice in suc-
cession (line 15 of Figure 5-2).

1 *TAB .
2 *I
3 INPUT:
4 * DOUBLE PRECISION ADD. A IN RO,R1. B IN R2,R3
5 * ON RETURN, A+B IS IN R2,R3
6
7 DADD.STRR,R1.DAR1
8 .ADDR.R3.DAR1
9 .PPSL.WD
10 .ADDZ.R2
11 .STRZ.R2
12 .CPSL.WC
13 .RETDMYNN
14 DAR1.RES.1
15
16 *B
17 *TY 55
18 * DOUBLE PRECISION ADD. A IN RO,R1. B IN R2,R3
19 * ON RETURN, A+B IS IN R2,R3
20
21 DADD 	STRR,R1 DAR1
22 	ADDR,R3 DAR1
23 	PPSL 	WD
24 	ADDZ 	R2
25 	STRZ 	R2
26 	CPSL 	WC
27 	RETDMYNN
28 DAR1 RES 	1
29 **EDF**

Figure 5-2. Entering Text and Displaying the Buffer

5-5

The effect of entering the TAB character can be seen by examining lines 9 and
23 in the display of the buffer (see Figure 5-2). Entering '.' at the start
of line 9 resulted in spaces being entered up to the next TAB stop, which is
located in column 8. Entering the second '.' as the sixth character in line 9
resulted in spaces being entered up to the next TAB stop, which is located in
column 16. The user may change either the TAB character or TAB stops by using
the TAB and TABS commands. The default TAB character is CTRL-I and the de-
fault TAB stops are 8, 16, 24, 32, 40, 48, 56, and 64.

To view the text that has been entered, it is necessary to move the line
pointer to the top line of the buffer. This is accomplished by entering B,
the Move Pointer to Beginning of Buffer command (line 16 of Figure 5-2). On
line 17 of Figure 5-2, the command to display 55 lines of the buffer is enter-
ed (55 is an arbitrarily large number which will allow the entire buffer to be
displayed). The Editor displays the buffer (lines 18-28 of Figure 5-2) and
then displays **EOF** to indicate it has reached the bottom of the buffer.
Note that the tabs entered in the input mode are present as spaces in the buf-
fer.

Upon examination of Figure 5-2, it is clear that two changes are necessary to
the text currently residing in the buffer. Line 23 should have WD altered to
WC and line 27 should have RETDMYNN altered to RETC,UN.

To find these lines, type F (the FIND command), a space, then WD, where the
data between the $s is the data you wish to find (line 1 of Figure 5-3). In
this case, the $ is the delimiting character, which means that the $s tell the
Editor where the data starts and where the data ends. The Editor finds the
first line in the buffer that contains WD, moves the line pointer to the
beginning of the line, and displays the line (line 2 of Figure 5-3). To alter
the WD to WC, enter S (the SUBSTITUTE command), a space, then WDWC$ (line 3
of Figure 5-3). The first $ says this is the start of the string to be
deleted. WD is the string to be deleted. The second $ is the end of the
string to be deleted, and the beginning of the string to substitute for the
deleted string. The final $ indicates the end of the string to substitute.

The Editor performs the substitution and displays the line as altered (line 4
of Figure 5-3). To change RETDMYNN to RETC,UN, find the line by entering F
(FIND), space, the RET to locate this string (line 5 of Figure 5-3). The
Editor prints the line on which it locates RET (line 6 of Figure 5-3). 	In
this case, you want to replace the line with the correct information. This is
done by pressing R (the REPLACE command), space, and then entering the infor-
mation desired, namely .RETC,UN (line 7 of Figure 5-3). This command replaces
the current line with the line following the R and space. The Editor displays
the replacement line after it has performed the replace function (line 8 of
Figure 5-3).

5-6

1 *F WD
2 	PPSL 	WD
3 *S WDWC$
4 	PPSL 	WD
5 *F RET
6 	RETDMYNN
7 *R .RETC,UN
8 	RETC,UN

Figure 5-3. FIND, SUBSTITUTE and REPLACE Commands

5-7

To insure that the changes were performed correctly, go to the top of the buf-
fer and display its contents (see Figure. 5-4).

Since you are satisfied that the buffer contains the correct information, you
want to store the information on the disk. This is accomplished using the
FILE command (line 15 of Figure 5-4), which writes the contents of the buffer
to the PRIMARY OUTPUT file and then transfers the rest of the PRIMARY INPUT
file, if one exists, to the PRIMARY OUTPUT file. Following the final trans-
fer, the Editor is exited and SDOS displays its prompt character. In this
case, the buffer will be copied to disk file DADDSB/O. There is no input
file, so DADDSB/O will be closed, the Editor will be exited (line 16 of Figure
5-4) and SDOS will display its prompt character (line 18 of Figure 5-4).

1 *B
2 *TY 55
3 * DOUBLE PRECISION ADD. A IN RO,R1. B IN R2,R3
4 * ON RETURN, A+B IS IN R2,R3
5

	

6 	DADD 	STRR,R1 DAR1

	

7 	ADDR,R3 DAR1

	

8 	PPSL 	WC

	

9 	ADDZ 	R2

	

10 	STRZ 	R2

	

11 	CPSL 	WC

	

12 	RETC,UN

	

13 	DAR1 	RES 	1
14 ** EOF **
15 *FILE
16 *SLJ* EOJ
17
18 .>

Figure 5-4. Displaying the Buffer and Filing

5-8

Now suppose you wish to expand DADDSB/O to include not only a double precision
add, but a double precision subtract, as in Figure 5-5.

* DOUBLE PRECISION ADD. A IN,RO,R1. B IN R2,R3
* ON RETURN, A+B IS IN R2,R3
*
DADD 	STRR,R1 DAR1
*

ADDR,R3 DAR1
PPSL 	WC
ADDZ 	R2
STRZ 	R2
CPSL 	WC
RETC,UN

DAR1 	RES 	1
* DOUBLE PRECISION SUBTRACT, A IN R2,R3. B IN RO,R1
* ON RETURN, A-B IS IN R2,R3
*
DSUB 	STRR,RO DSRO

STRR,R1 DSR1
SUBR,R3 DSR1
PPSL 	WC
SUBR,R2 DSRO
CPSL 	WC
RETC,UN

DSRO 	RES 	1
DSR1 	RES 	1

END 	DADD

Figure 5-5. EDIT Sample Double Precision Add and Subtract

5-9

To edit the additional information into the file DADDSB/0, do the following
tasks.

Start the Editor by entering:

>EDIT DADDSB/0 e
While this command is identical to the command entered earlier, it now has a

different interpretation. In the first example, DADDSB/0 was a new file.

When a new filename is the sole argument to an EDIT command, the file is
treated as the PRIMARY OUTPUT file and there is no PRIMARY INPUT file. This
is as it should be, since if you are in the process of creating a new file
which will contain unique information, there is no need for a PRIMARY INPUT
file. 	In this case, DADDSB/0 is an existing file which contains the double
precision addition routine, so this EDIT command requests that DADDSB/0 be
edited to itself.

When the Editor displays its prompt character * you can proceed. Since the
new text is to be appended to the existing text in DADDSB, you must read the
existing file into the buffer. This is accomplished by entering G (the GET
command), space, and then 20, an arbitrarily large number that will result in
DADDSB/0, which we know to be approximately 10 lines long, being read into the
buffer. (See line 1 of Figure 5-6). The Editor reads the PRIMARY INPUT file,
which is the default filename in the GET command, until it inputs the speci-
fied number of lines or until it reaches the end-of-file. 	In this case, the
end-of-file is reached first, so the message **EOF** is displayed (line 2 of
Figure 5-6).

5-10

1 *G 20
2 ** EOF **
3 *B
4 *TY 55
5 * DOUBLE PRECISION ADD. A IN RO, Rl. B IN R2,R3
6 * ON RETURN, A+B IS IN R2,R3
7
8 DADO STRR,R1 DAR1

	

9 	ADDR,R3 DAR1

	

10 	PPSL 	WC

	

11 	ADDZ 	R2

	

12 	STRZ 	R2

	

13 	CPSL 	WC

	

14 	RETC,UN
15 DAR1 RES. 1
16 ** EOF **
17 *END
18 ** EOF **
19 *TAB .
20 *I
21 INPUT:
22 * DOUBLE PRECISION SUBTRACT. A IN R2,R3. B IN RO,R1
23 * ON RETURN, A-B IS IN R2,R3
24
25 DSUB.STRR,RO.DSRO
26 .STRR,R1.DSR1
27 .SUBR,R3.DSR1
28 .PPSL.WC
29 .SUBR,R2.DSRO
30 .CPSL.WC
31 .RETC,UN
32 DSRO.RES.1
33 DSR1.RES.1
34 .END.DADD
35
36 *B
37 *TY 25
38 * DOUBLE PRECISION ADD. A IN RO,R1. B IN R2,R3
39 * ON RETURN, A+B IS IN R2,R3
40
41 DADO STRR,R1 DAR1

	

42 	ADDR,R3 DAR1

	

43 	PPSL 	WC

	

44 	ADDZ 	R2

	

45 	STRZ 	R2

	

46 	CPSL 	WC

	

47 	RETC,UN

	

48 	DAR1 RES 	1
49 * DOUBLE PRECISION SUBTRACT. A IN R2,R3. B IN RO,R1
50 * ON RETURN, A-B IS IN R2,R3
51
52 DSUB STRR,RO DSRO

	

53 	STRR,R1 DSR1

	

54 	SUBR,R3 DSRO

	

55 	PPSL 	WC

	

56 	SUBR,R3 DSRO

	

57 	CPSL 	WC

	

58 	RETC,UN

	

59 	DSRO RES 	1

	

60 	DSR1 RES 	1

	

61 	END 	1
62 **EDF"

Figure 5-6. Adding Data to an Existing File

5-11

Where was the data inserted in the buffer? The answer is that the data was
inserted above the line pointer as in the INPUT mode example. To view the
buffer, move the pointer to the beginning of the buffer (line 3 of Figure
5-6). Display the buffer by entering TY 55 (line 4 of Figure 5-6). This
command displays the Buffer and prints **EOF** to indicate the bottom of the
buffer (lines 5-16 of Figure 5-6). Note that **EOF** has two uses, one to
indicate the end of the buffer and one' to indicate the end of the file.

To enter the double precision subtract routine after the add routine, you must
go to the bottom of the buffer to perform the insertion. Do this by entering
END. This command moves the line pointer to a location below the last line of
text (lines 17 - 18 of Figure 5-6). The TAB character is specified as a . in
line 19. Enter the input mode by entering I (line 20 of Figure 5-6). Enter
the source data (lines 22 - 35 of Figure 5-6). The effect of the TAB charac-
ter can be seen in lines 52 to 61 of Figure 5-6, when the entire buffer is
displayed by the commands on lines 36 and 37.

Suppose you desired to make the source listing a little more readable. For
example, suppose you want to add an * line between lines 48 and 49 and between
lines 59 and 59 of Figure 5-6. To do these tasks, you must first position the
line pointer to point to the line that begins with "* DOUBLE PRECISION
SUBTRACT". This can be accomplished by moving the line pointer down the buf-
fer. Enter D (the Move Line Pointer DOWN the Buffer Command), space, 10 (line
1 of the Figure 5-7). This moves the line pointer 10 lines down. The Editor
displays the line that the line pointer now points to in Tine 2 of Figure
5-7. The * line is desired between the lines "DAR1 RES 1" and the"* DOUBLE
PRECISION SUBTRACT". The INSERT command inserts the line specified above the
current line. Therefore, go down the buffer one more line. This is accomp-
lished by entering D Qr , since the default value for the number of lines to
move is 1 (line 3 of Figure 5-7). To enter the * line, enter I (the INSERT
line command unless I is immediately followed by a RETURN, in which case the
user enters the INPUT mode), space, * Qr (line 5 Figure 5-7). To enter the
second * line between the two temporary variables, DSRO and DSR1, and the sub-
tract routine, go to the bottom of the buffer. This is accomplished by enter-
ing END (line 6 of Figure 5-7). The Editor indicates the line pointer's
position at the bottom of the buffer by displaying ** EOF ** (line 7 of Figure
5-7). Move the pointer buffer to the line where you wish to enter the * by
entering U (the Move Line Pointer UP the buffer command), 3 Cr) , (line 8 of
Figure 5-7). This command moves the line pointer up three lines and displays
the line (line 9 of Figure 5-7). To enter the * line, enter I (INSERT),
space, * r (line 10 of Figure 5-7).

After displaying the buffer (lines 11 - 39 of Figure 5-7) and insuring that
the text you desire is present, the data may be stored on file DADDSB/O by the
use of the FILE command (line 40 of Figure 5-7). The contents of the buffer
are written to the temporary Primary Output file, *ADDSB/0. The remainder of
the PRIMARY INPUT file, DADDSB/0, is copied to the temporary output file.
Since all the data has been read from the temporary input file (lines 1-2 of
Figure 5-6, ** EOF **), no additional data is written to the temporary Output

file. The file DADDSB/O is deleted and *ADDSB/O is renamed DADDSB/O. The
Editor exits and SDOS displays its prompt character.

5-12

1 *D 10
2 DAR1 RES 1
3 *D
4 * DOUBLE PRECISION SUBTRACT. A IN R2,R3. B IN RO,R1
5 *I *
6 *END
7 ** EOF **
8 *U 3
9 DSRO RES 1
10 *I *
11 *B
12 *TY 55
13 * DOUBLE PRECISION ADD. A IN RO,R1. B IN R2,R3
14 * ON RETURN, A+B IS IN R2,R3
15
16 DADD 	STRR,R1 DAR1
17 	ADDR,R3 DAR1
18 	PPSL 	WC
19 	ADDZ 	R2
20 	STRZ 	R2
21 	CPSL 	WC
22 	RETC,UN
23 DAR1 REC 	1
24
25 * DOUBLE PRECISION SUBTRACT. A IN R2,R3. B IN RO,R1
26 * ON RETURN, A-B IS IN R2,R3
27
28 DSUB 	STRR,RO DSRO
29 	STRR,R1 DSR1
30 	SUBR,R3 DSR1
31 	PPSL 	WC
32 	SUBR,R2 DSRO
33 	CPSL 	WC
34 	RETC,UN
35
36 DSRO RES 	1
37 DSR1 RES 	1
38 	END 	DADD
39 ** EOF **
40 *FILE
41 *SLJ* El]
42
43

Figure 5-7. Inserting Lines into the Buffer

5-13

5.3 EDITOR COMMAND DESCRIPTIONS

This section provides detailed descriptions of all the Text Editor commands.
As a prelude to these descriptions, the Editor command line, the conventions
and terms used in the descriptions, and certain limitations are described.

5.3.1 . Editor Command Line

When the editor presents its prompt character, *, it is ready to accept com-
mands. All Editor commands are of the form:

command parameterlist

where:

command 	identifies the particular action desired.
The underlined portion denotes the minimum number of
characters to identify the command.

parameterlist 	identifies necessary variables for the command. The
parameter list may be null.

NO TE

Comma (,) is not a valid parameter delimiter
in the Editor.

A command line consists of one or more commands terminated by RETURN. If you
desire to specify two or more commands in one command line, the commands must
be separated by the command delimiter semicolon (:).

Example:

*F $BADLINES$:K 1 0

would find the next line in the buffer with the string BADLINE in it and then
delete that line.

A command line may not exceed 128 characters. If the Tine does exceed 128

characters, **TRUNCATED** is displayed on the console and the entire command
line is rejected.

5-14

5.3.2 Editor Command Description Conventions

There are several conventions employed in the description of the Editor com-
mands, and two features of the Editor that require explanation.

Conventions used in the command descriptions are:

1) N refers to two possible entries. These are:

a) an absolute number (n)
b) a line range (p-q).

For example, KILL N refers to two possible types of command lines, KILL n
or KILL P-q. 	Thus you could KILL the next n lines or KILL lines p
through q (inclusive) in the buffer. The default of N is 1 with the ex-
ception of:

a) COPY command
b) GET and PUT commands when an alternate file is specified.

In these cases, N must be specified. In addition, N may be directly
appended to the command when it is used. For example, KILL N may be
written as Kn or Kp-q. The arguments n,p and q must be integers in the
range 1 to 32,767, inclusive.

2) The letters B, E, and C may be used in the "p-q" form of expressing line
ranges. They refer to the Beginning, Ending, and Current lines in the
workspace. If used, these letters may not be directly appended to the
command. A space after the command is required.

3) The Editor maintains a line pointer to the line in the buffer that it is
currently considering. The line is known as the current line. The line
pointer will be designated in this discussion as:

For example, the buffer appears as follows:

ADDR,R2 	TEMP
STRR,R2 	TEMP2
ADDI,R2 	ERR1

Inserts always occur above the current line.

4) $ is used to represent the delimiting character for a string of text. The
delimiter cannot be a space and cannot- appearin the string being delimit-
ed. 	'$' was used in the previous Edit example.

5) Parameters that are optional for a command are enclosed in parentheses.

The two features of the TWIN Editor are:

1) The Editor will type the line pointed to by the line pointer at the com-
pletion of most commands. This feature keeps the user appraised of his
position in the buffer. For a complete discussion of how to manipulate
this feature, consult the BRIEF command.

LP 	

5-15

2) The Editor has two special command delimiters:

a) The semicolon: which allows you to stack commands on a commmand line.
b) < and >which execute a command line repetitively.

These characters may be entered as text only while in INPUT mode or
with the / prefix. The slash / overrides the command delimiter
meaning for the current command.

5-16

5.3.3 Insertion

You may insert source lines into the buffer with the INSERT and INPUT commands.

INSERT string

This command will insert the data line STRING before the current line in the
buffer. This allows the user to enter single lines into the buffer. The
position of the line pointer is not changed.

For example, if the buffer appears as follows:

ADDR,RO DAR2
ADDR,R1 DAR3

and the command

*INSERT STRR,RO DAR5

is entered, the buffer is altered to

ADDR,RO DAR2
STRR,RO DAR5
ADDR,R1 DAR3

If you enter a null input string by depressing e after the single delimit-
ing space, the editor enters the INPUT mode, described below.

INPUT

The editor may be placed in the INPUT mode by entering:

INPUT 0

The editor responds with

INPUT:

to indicate that it has entered the INPUT mode.

In the INPUT mode, you may enter any number of text lines. These lines will
be entered into the buffer in front of the current line. The INPUT mode is
terminated by entering a null line. The position of the line pointer is not
changed. For example, if the buffer appears as follows:

ADDR,RO 	DAR2
LP 	 ADDR,R1 DAR3

LP 	

LP 	

5-17

and the sequence

*INPUT 0
INPUT:
STRR,RO 	BARS
ADDR,R2 	DAR4
ADDZ,R2 0 e

8
is entered, the buffer is altered to

ADDR,RO 	DAR2
STRR,RO 	DAR5
ADDR,R2 	DAR4
ADDZ,R2
ADDR,R1 	DAR3

In the INPUT mode, no text line may exceed 128 characters. If more than 128
characters are input before RETURN is pressed, **TRUNCATED** is printed on the
console, and only the first 128 characters entered are placed in the buffer.

5-18

5.3.4 Deletion

You may delete lines in the buffer using the KILL command.

KILL n

This command has two forms:

1) delete the next n lines beginning with current line or

2) delete line numbers p through q in the buffer.

If no argument is specified, the current line is deleted.

For example, if the buffer appears as follows:

LINE 1
LINE 2
LINE 3
LINE 4
LINE 5
RETC,UN

and the following command is performed

*K 4

the buffer will be changed to

LINE 5
RETC,UN

The command K 1-4 could have been used to produce the same effect.

The KILL command moves the line pointer in the following manner:

1) If K n is used, and the line pointer is positioned on line x, the line
pointer is repositioned to point at what was line n + x before the dele-
tion took place.

In the above example, K 4 is used as the command, and the line pointer is
positioned at line 1 in the buffer. Therefore, the line pointer is repo-
sitioned to point at what was the fifth line, LINE 5.

2) If K p-q is used, there are two possible positionings of the line pointer.

a) If the pointer points at a line between line p and line q, the line
pointer will be repositioned at what was line q + 1.

b) If the line pointer points at a line that is not between line p and
line q, the position of the line pointer is not changed.

5-19

5.3.5 Alteration 	 J

You may alter lineS in the buffer through the use of the SUBSTITUTE and
REPLACE commands. Both commands operate on the line pointed to by the line
pointer.

SUBSTITUTE $stringl$string2$

The SUBSTITUTE command finds the first occurrence of STRING1 in the current
line and replaces STRING1 with STRING2. The $ delimits the start and end of
the string definition. To perform a substitution with a $ in either STRING1
or STRING2, any other character may be used as the delimiter, but the same
character must be used for all three delimiter positions in the command. The
final deliminter need not be entered unless the : is used to append another
command to this one.

If STRING1 is not found in the current line, **NOT FOUND** is displayed on the
console.

STRING2 may contain TAB characters (See Section 5.3.9). Conversion of the TAB
characters to spaces in the buffer depends on the column in which the substi-
tution occurs. The substitution of spaces for TAB characters is always in
accord with the current TAB positions.

The AGAIN command may be used to alter additional occurrences of STRING1 in
the current line only. The line pointer is not advanced if the string is
** NOT FOUND **.

If a substitution causes a line to exceed 128 characters, the message
TRUNCATED is displayed on the console and the line is truncated by trun-
cating characters from the text which is being inserted.

Example 1:

If the current line is

ADDR,R3 	DRSV

the command

S DRDA$

would alter the line to

ADDA,R3 	DRSV

Example 2:

If the current line is a 127 character line

(63 A's) 	(62 C's)

AA 	AABBCC 	CC

5-20

and the command

S BB12345$

is performed, the message **TRUNCATED** is displayed on the console and the
current line is altered to 128 characters:

(63 A's) 	(62 C's)
AA 	AA123CC 	CC

The result of any substitution does not change the position of the line
pointer.

Example 3:

In Example 1, SUBSTITUTE DRDA$, the character '$' is used as a delimiter.
The first '$' indicates the completion of the first string and the beginning
of the string to substitute. The third and final '$' indicates the completion
of the string to substitute.

Suppose, however, this line appeared in the buffer:

WINES BY $RIDGE$

If you want to replace $RIDGE$ with +RIDGE+, you cannot use this command:

S $$RIDGE$$+RIDGE+$

Since $ is being used as the delimiter, it may not be inserted in either
STRING1 or STRING2. Use another character as the delimiter. Here we choose
the slash.

S /$RIDGE$/+RIDGE+/

alters the line to the desired:

WINES BY +RIDGE+

REPLACE string

The REPLACE command is used to replace the current line with STRING. STRING
may not be a null line.

Example 1:

If the current line is:

LP 	»-ADDR,R2 DAR1

5-21

the comm and:

*R STRR,R2 DAR1

will result in the current line being altered to:

LP 	 STRR,R2 DAR1.

The position of the line pointer is not altered.

5-22

5.3.6 String Search

You may search the buffer for a specified string using the EIND command.

FIND $string$

This command searches the buffer, starting at the current line, for the first
line that contains STRING. If STRING is found, the line pointer is reposi-
tioned to point to the line in which string occurs. The $ delimits the start
and end of the string to find. To locate a string which itself contains $,
any other character may be used as the start and end delimiter. The final $
need not be entered unless the : is used to append another command to this one.

If STRING is not found the message *NOT FOUND* is displayed, and the line
pointer is left unchanged.

If the FIND command is invoked by use of the AGAIN command (see Section
5.3.9), the search starts at the current line plus one.

Example:

If the buffer appears as follows:

LINE 1

	

LP 	 LINE 2
LINE 3
LINE 4
LINE 5

and the command:

F 4

is executed, the line pointer will be moved to this position:

LINE 1
LINE 2
LINE 3

	

0-1-0 	.- LINE 4
LINE 5

Note that the command

F 1

will display *NOT FOUND* on the console since the specified string is in a
line above the line pointer.

5-23

5.3.7 1/0 Commands

You may bring information into or send information out of the buffer using the
GET, PUT, and LIST commands. You may move data between files using the COPY
comm and.

Before discussing the I/O commands, twq concepts require explanation.

1) The Editor maintains 'pointers' into the PRIMARY INPUT and PRIMARY (or
temporary) OUTPUT files. These pointers indicate the position of the next
line to be read from the PRIMARY INPUT file (the PI pointer) and the posi-
tion of the next line to be written in the OUTPUT file (the PO pointer).
Initially, both pointers point to the first line in the respective files.

The PI pointer will only be affected by GET commands that use the default
filename option. The PO pointer will only be affected by PUT or COPY com-
mands that use the default filename option.

When a file is closed, the file is only affected if it was being written.
The SDOS buffer containing the file data is written to the file. The end-
of-file mark is used by SDOS to determine the logical end of a file.
Therefore, any data that existed after the end-of-file mark is no longer
considered part of the file. Note that problems will arise if a data file
is mistakenly end-filed in the middle of the data file, as all data fol-
lowing the end-of-file mark will be lost permanently.

GET n (filename)

The command reads N lines of data into the buffer. FILENAME specifies the
file that will be accessed to provide the data. If FILENAME is omitted, data
will be input from the PRIMARY INPUT file. The data that is input is inserted
above the current line pointer. The position of the line pointer is not
changed.

If you specify the PRIMARY INPUT file as FILENAME, the pointer into the
PRIMARY INPUT file will not be altered. But, if you specify no FILENAME, the
PI pointer is advanced.

The PRIMARY OUTPUT file may not be used as FILENAME.

Example 1:

If the buffer appears as follows:

PPSL 	WC
	 RETC,UN
DAR1 RES 1

5-24

and file A contains the five lines

ADDZ 	R2
STRZ 	R2
CPSL 	WC
RETC, UN

LAB 	RES 	1

performing the command:

GET 1-3 A

alters the buffer to :

PPSL
ADDZ 	R2
STRZ 	R2
CPSL 	WC

LP 	 RETC,UN
DAR1 RES 1

Example 2:

If 6 lines have been read from the PRIMARY INPUT file, ASYM, with a GET 6 com-
mand, a

GET 2

command would read the 7th and 8th lines and move the PI pointer to the ninth
line.

However, if the command was not GET 2 but:

GET 2 ASYM

The lst and 2nd lines would be read into the buffer. The GET 2 ASYM command
would not affect the pointer into the file ASYM. Any succeeding GET N command
would begin with the 7th line.

PUT n (filename)
PUTK n (filename)

These commands write N lines of data from the buffer to an output file.
FILENAME specifies the file where the data will be written. FILENAME may not
be specified as the PRIMARY INPUT file or the PRIMARY OUTPUT file. If
FILENAME is specified, the data will be output to the beginning of the file
and the file will be closed when the write is complete. Thus, if FILENAME
already contains data, the old data will be lost.

5-25

1

The default FILENAME is the PRIMARY OUTPUT file. The data will be written
beginning at the PO pointer and the PO pointer will be moved to the next
empty line in the file. This allows you to write the buffer to your out-
put file before GETting the next set of lines to edit for large files.

For PUTK, the lines written to the output file are deleted from the buf-

fer. 	If PUTK is specified there, are two possibilities for line pointer
position:

1) The line pointer points to a line which will be deleted. After the

PUTK command, the line pointer is repositioned to the line immediately
following the deleted text.

2) The line pointer points to a line which will not be delete d. 	In this

case, the position of the line pointer is not altered.

Example:

If the buffer appears as follows:

LINE 1
	 LINE 2

LINE 3
LINE 4
LINE 5

and the command

*PUTK 2

is executed, the second and third lines will be written to the PRIMARY OUTPUT
file and deleted from the buffer, leaving the buffer as follows:

LINE 1

LINE 4
LINE 5

LIST n

This command lists N lines of data on the line printer. The current line

pointer position is not changed. The default value of N is 1.

COPY n infile (outfile)

This command copies N lines from INFILE to OUTFILE. If OUTFILE is not speci-

fied, the data is copied from INFILE to the PRIMARY OUTPUT file. OUTFILE may
not be the PRIMARY INPUT file. You may specify the PRIMARY INPUT file as the
INFILE without disturbing the pointer into the PRIMARY INPUT file.

5-26

When OUTFILE is specified, the data is copied from INFILE to the beginning of
the file and OUTFILE is then closed. Thus if OUTFILE already contains data,
the old data will be lost. If the PRIMARY OUTPUT file is used by default, the
data is copied from INFILE to the PRIMARY INPUT file beginning at the PO
pointer.

The COPY command does not use the buffer to transfer data, and it will not
alter the buffer or the current line pointer.

5-27

5.3.8 Line Pointer Commands

You may alter the position of the line pointer by using the BEGIN, END, DOWN,
and UP commands. You may print the current line pointer position with the N
command.

BEGIN

This command positions the line pointer at the first line of the buffer.

END

This command positions the line pointer past the last line of the buffer.
EOF is displayed on the console to indicate that the line pointer is at
the end of the workspace.

DOWN n

This command moves the line pointer n lines down the buffer. The default
value of n is 1. If the current line is x and n+x is greater than the number
of lines in the buffer, the effect is the same as the END command.

UP n

This command moves the line pointer n lines up the buffer. The default value
of n is 1. 	If the current line is x and 1-x is less than 1, the line pointer
is set to point at the first line in the buffer, having the same effect as the
BEGIN command.

This command displays on the console the number of the line pointed to by the
current line pointer.

5-28

5.3.9 Utility Commands

You may perform a variety of service or program maintenance functions using
the AGAIN, BRIEF, FILE, QUIT, SDOS, TAB, TABS, TYPE, ?, / commands and the
iterate command function, m <Ccommand> .

AGAIN

This command performs the previous 'repeatable' command. Commands that are
not repeatable are:

AGAIN
BRIEF
FILE
INPUT
MACRO
QUIT
TAB
TABS

The SUBSTITUTE command is repeatable within the current line.

NO TE

If a non-repeatable command was the last
command specified, and the AGAIN command is
entered, the AGAIN command will look back to
discover the last 'repeatable' command,
which will then be performed.

Example:

If the buffer appears as follows,

LINE 1
	'-- LINE 2

LINE 3
LINE 4
LINE 5
LINE 6

and the command

*K2

is performed, the buffer is altered to

LINE 1
	'-- LINE 4

LINE 5
LINE 6

5-29

If the next command performed is

*A

the buffer is altered to

LINE 1
LINE 6

FILE

The FILE command is used to close an edit session. All the data in the buffer
is transferred to the PRIMARY OUTPUT file. The data is inserted beginning at
the PO pointer, and the PO pointer is then repositioned to the end of the in-
serted text. The rest of the PRIMARY INPUT file, the portion from the PI
pointer to the end of the PRIMARY INPUT file, is then moved to the PRIMARY
OUTPUT file beginning at the PO pointer. Both files are then closed.

The Edit session is terminated, *SLJ* EOJ is displayed on the console, and
control returns to SDOS.

IYPE n

This command displays N lines on the console. The current line pointer is
left unchanged. If no value is specified for N, the current line is displayed.

Example:

If the buffer appears as follows:

LINE 1
LINE 2

LP 	 LINE 3
LINE 4
LINE 5

the command

*TY 2-4

results in the following display on the console

LINE 2
LINE 3
LINE 4

LP 	

5-30

QUIT

The QUIT command is used to abort an edit session and throw away all edits
performed in the session thus far. The PRIMARY INPUT and PRIMARY OUTPUT files
are closed and then the Edit session is terminated. If the PRIMARY OUTPUT
file is a new file, this file is deleted before the editor exits.

SLJ EOJ is displayed on the console, and control returns to SDOS.

TAB character

This command defines the single character CHARACTER as the tab character. The
tab character may not be the :, < , or > characters. The default value of the
tab character is CONTROL-I, which is produced by depressing the I key while
the CONTROL key is depressed.

Example:

To set the tab character to a different value enter:

*TAB C
*I
INPUT*
USING C AS THE TAB CHARACTER IS NOT A GOOD IDEA
r
*B:T
USING AS THE TAB 	HARA 	TER IS NOT A GOOD IDEA

In this example, all occurrences of the character C have been interpreted as
tabs.

TABS Cl C2 C3...

This command sets the tab positions to the specified columns Cn. When the TAB
character is entered from the console, the Editor replaces the TAB character
in the buffer with spaces up to the next TAB position. The additional spaces
are not reflected on the console at input, but they can be seen if the buffer
is listed out.

The default TAB positions are:

8, 16, 24, 32, 40, 48, 56 and 64.

5-31

Example:

The default TAB positions produce this result,

*TAB C

*I
INPUT:
CHARACTER C IS THE TAB CHARACTER

*B:T
HARA 	TER 	IS THE TAB 	HARA 	TER

The TAB positions could be altered to produce this result,

*TABS 1 6 11 16 21 31 36
*I
INPUT:
CHARACTER C IS THE TAB CHARACTER

*B:T

HARA
	

TER 	IS THE TAB 	HARA TER

m<editor commands>

This form of the command line causes the commands inside the angle brackets to

be repeated M times. 	If M is omitted, the commands inside the brackets are
performed once. The angle brackets must be paired.

Iterated commands may be nested to a depth of 16 levels.

Example:

If the buffer appears as follows:

LP 	 STRZ 	DAR2
PPSL 	WD
ADDR,R2 DAR1
ADDR,R3 DAR1
CPSL 	WD

the command

* KF$WDS:S WDWC$>

results in the buffer being altered to:

STRZ 	DAR2
PPSL 	WC
ADDR,R2 DAR1
ADDR,R3 DAR1

LP 	 CPSL 	WC

5-32

SDOS

This command suspends the Editor and returns control to SDOS. The Editor may
be continued using the SDOS CONTINUE c'ommand.

7

Entering a ? character causes the Editor's I/O status to be displayed on the
console. The following information is displayed.

PI
LINE
PO
LINE
LAST AI
LAST AO

= PRIMARY INPUT Filename
= Next line to "GET" from the PI file
= PRIMARY OUTPUT Filename
= Next line to "PUT" to the PO file
= Last Alternate Input file name referenced
= Last Alternate Output file name referenced

If the / character is the first character in an EDIT command, the special
characters 	, and : do not perform their usual functions.

Example:

The command

F $LEFTANGLE,

will be rejected because the angle brackets do not balance. However, the com-
mand

/ F $LEFTANGLE, <$

finds the string 'LEFTANGLE,< 1 .

BRIEF

The BRIEF command changes the current state of the BRIEF switch. The BRIEF
switch is an ON/OFF switch which controls Editor output to the console as
follows:

OFF - The line pointed to by the current line point is displayed on the
console after completion of the END, UP, DOWN, FIND, SUBSTITUTE, and
REPLACE commands.

5-33

ON - The line pointed to by the current line pointer is not displayed.

The default switch setting is OFF. Appending a period . to one of the com-
mands listed above when BRIEF is OFF will suppress the display for the dura-
tion of that command.

Example: 1

If the buffer appears as follows:

0.3 	 LINE 1
LINE 2
LINE 3

and the command:

*D 1

is performed, the Editor moves the line pointer down the buffer to LINE 2 and
displays on the console:

LINE 2

You may issue a BRIEF command, changing the BRIEF switch to ON. This state
will suppress the display of the current line. Now if these commands are
entered:

*BRIEF
*D 1

the Editor performs the DOWN command to move the line pointer down the buffer
to LINE 3 but does not display the line.

Example 2:

In the previous example, assume BRIEF is off, entering

*D.1

suppress display of the line

LINE 2

at completion of the DOWN command.

5-34

5.3.10 Macros

You may define or execute a macro with the MACRO command.

MACROm=command line

This is the MACRO definition command. M is an integer which identifies the
macro, and must be greater than 0 and less than 128.

COMMANDLINE may be any of the Editor commands discussed previously in this
chapter. However, COMMANDLINE must not contain a macro execution or defini-
tion command; this will result in an error when the macro is executed.

If a MACROm already exists, and MACROm=COMMANDLINE is performed, COMMANDLINE
replaces the old MACROm.

MACROm

To execute MACROm, simply enter the macro number as Mm. The effect is equiva-
lent to having entering all of the commands in the previously defined
COMMANDLINE.

5-35

5.4 EDITOR MESSAGES

This section provides a list of all Editor messages and an explanation of

their meaning.

Fatal Errors

MESSAGE

** SDOS STAT= XX **

MEANING

XX is the SDOS SRB status byte returned to the editor
when an unusual request or event has occurred. The
meaning of the status byte can be found in Appendix G
of this manual. The Editor is aborted when the error
is on one of the PRIMARY files.

Non-Fatal Errors

MESSAGE 	MEANING

** WSP FULL ** 	The buffer is full.

** NOT FOUND ** 	The given string could not be found.

** DISK FULL ** 	The parameter n is in error.

** RANGE? ** 	The parameter n is an error or an attempt was made to
reference lines which are not in the workspace.

An attempt was made to execute a macro from within a
macro string; this is not allowed.

The nesting brackets < and > do not balance.

An unknown command was encountered in the command line.

The ESCAPE Console Key was depressed to terminate
execution of a file I/O function.

Editor usage is in error.

For this editing session there is no PRIMARY INPUT
file; the user may not do "GET's" without specifying
an Alternate Input file.

For this editing session there is no PRIMARY OUTPUT
file; the user may not do "PUT's" without specifying
an Alternate Output File.

An attempt was made to read from a non-existent file

or an illegal input device.

The editor response is in reference to an input
attempt.

The editor response is in reference to an output
attempt.

** MODE **

** NEST **

** COMMAND? **

** BREAK **

* * PROCEDURE ERROR * *

** NO PI **

** NO PO **

** READ FILE? **

** (INPUT) **

** (OUTPUT) **

5-36

MEANING

The editor response occurred in reference to the
Primary or Alternate Input or Output, as applicable.

A new file was created. This is a informational
message only.

The editor response occurred in reference to the
line printer.

The editor was unable to assign a channel to a
given device.

An attempt was made to "EDIT INFILENAME
OUTFILENAME" where INFILENAME and OUTFILENAME were
not the same file and INFILENAME was non-existent.

MESSAGE

** PI **
** PO **
** AI **
** AO **

** NEW FILE **

** (LPT1) **

** ASSIGN PROBLEM **

** PI=NEW FILE? **

** EOF ** 	1. An end-of-file was reached on input or output.

2. The line pointer is positioned at the end of the
workspace.

** NO FILES SPECIFIED ** 	The user initiated the editor without specifying any
primary files; for this editing session the user
may not do "GET's" or "PUT's" without specifying an
Alternate file.

** TRUNCATED ** 	1. A command line exceeded 128 characters and was
rejected.

2. An INPUT line exceeded 128 characters and was
truncated to the first 128 characters entered.

3. A SUBSTITUTE caused the line to exceed 128
characters and the line was truncated to 128
characters. (See Example in Section 5.3.5)

** NUMBER ** 	The line number or range entered was in error.

** ERROR ** 	An error condition not listed above was encountered.

5-37

0

O

0
O

CHAPTER 6

THE ABSOLUTE ASSEMBLER

6.0 INTRODUCTION

The Absolute Assembler, ASM, is a system program used to translate 2650 source
program code into 2650 object code that is executable by the TWIN system. ASM
performs three major tasks:

1) It will assemble the user specified source file and generate hex for-
mat object code which is written to a user specified object file. Hex
format object code is described in Appendix C.

2) It will create a listing which includes every assembled source in-
struction, the instruction address generated for the source instruc-
tion, the object code generated for the source instruction, and all
assembly errors. This listing is written to a user-specified device
or file. The assembler directive PRT may be used to suppress the
listing and list only the errors. For details on 2650 assembly lang-
uage syntax, instruction codes and other related material, consult the
TWIN 2650 Assembly Language Manual.

3) It will display errors on the console, if not overridden by a command
parameter.

6.1 PRE-ASSEMBLY TASKS

The user must insure that two conditions exist before ASM may be used:

1) The source program is present on a floppy disk file that is on a cur-
rently loaded disk.

2) SDOS is ready to accept commands. SDOS presents its prompt charac-
ter > when it is ready for commands.

6-1

6.2 THE ASM COMMAND

To execute the Assembler, enter the following SDOS command:

ASMIsourcefilenam0 [Iistfilename] [objectfilename] [WIDE] [NOERR]

where:

SOURCEFILENAME 	is the name of the disk file where the source
code resides.

LISTFILENAME 	is the name of the disk file or output device to
which the hex format object code is to be written.

WIDE 	the output line is to be 120 print positions
wide; default is 72 print positions. The para-
meter may be abbreviated to W.

Note: If the listing is directed to the TWIN
Printer, the N/C (Normal/Compacted) print switch
on the printer should be set to the position com-
patible with the output line width:

N for default,
C for WIDE

NOERR
	

indicates that errors should not be displayed on
the console. The parameter may be abbreviated to
N.

For example, if the double precision add/subtract subroutine shown in Figure
6-1 were to be assembled, the following tasks need to be performed.

a) Six EQU assembler directives must be entered into the source file.
These EQU's are necessary to define the meaning of RO, R1, R2, R3, UN
and WC to the assembler. See the 2650 Assembly Language Manual for
details.

b) The command

)>ASM DADDSB/O,LPT1,DADOBJ/0

will write the hex object code produced on file DADOBJ/0, and produce
the listing shown in Figure 6-2 on the line printer.

6-2

1 *: DOUBLE PRECISION FiDD. R IN KIRI. B IN R2, R3.
2* ON RETURN, Fi+8 IS IN R2, R3.

*
4*
5 DRDD 	STRR,R1 DFiR1
6 	RDDR, R DAR1
7 PPSL MC
8 RDDZ 9
9 STRZ P2
10 CPSL MC
11 	CPSL 	ME:
12 	RETC, UN
13 DRR1 FES
14*
S* DOUBLE PRECISION SUBTRACT. Ft IN R2, RZ. B IN RIK
16 * ON RETURN, A-B IS IN R2, R3
17

• 1° SUB STRR,R0 DSRO
19 	STRR, Pl DSR1
20 	SUBR, DSR1
21 	PP51.
22 	SUBR., R2 DSRO

CPSL
24 	RETC, UN

26 DSP.0 RES 	1
27 DSR1 PES 	1

END DRDD
29 	END 	DADD

Figure 6-1. Sample Program

6-3

TWIN ASSEMBLER VER 2. 	 PAGE 0001

LINE ADDR OBJECT E SOURCE

0001 	!DOUBLE PRECISION ADD. R IN RO,R1. B IN R2,R3.

0002 	* ON RETURN, R+B IS IN R2,R3.

0003
0004 0000 	RO 	ECU 	0

0005 0801 	R1 	ECU 	1

0006 0002 	P2 	ECU 	2

0007 0007 	R3 	ECU 	3

Wieme 	UN ECU 3

90008 	WC 	ECU 	8

0010

0011 0000 C906 	DADD STRR.R1 DAR1

0812 0002 8609 	0000,P3 DAR1

0013 0004 7708 	PPSL 	WC

0014 0006 82 	ADDZ 	R2

0015 0007 9 	STK 	P2

0016 0008 7.508 	CPSL 	WC

0017 000A 7508 	CPSL 	WC

0018 0072 17 	RETCAN

8019 000D 	026 RES 	1

0020

0021 	* DOUBLE PRECISION SUBTRA. A IN R2,R1 B IN RO

0022 	*A RETURN, A-B IS IN R2,R3

8023

0024 000E C808 	DSUB STWRO DSR8

50010 C90A 	SIWR1 DSR1

0026 0012 A608 	SU00, R3 DSR1

0027 0014 7708 	PPSL 	WC

0028 0016 2R07 	SUBR,R2 DSRO

0029 0018 7508 	CPSL 	WC

0030 001A 17 	RETCAN

0031
0072 0018 	DSRO RES 	1

9037 001C 	DS4 RES 	1

0E4 0000 	 END DROD

TOTAL ASSEMBLY ERRORS - 0008

Figure 6-2. Absolute Assembler Output

6-4

6.3 POST-ASSEMBLY TASKS

When ASM has completed its talk, SDOS will display its prompt character > to
indicate it is ready for commands. Errors will have been displayed on the
console unless the N option was entered, in which case the error display will
have been suppressed.

If ASM produced a listing, the listing will contain the two heading lines in

Figure 6-2, the assembled source code, and the final line which indicates the
number of assembly errors. The columns in the second line of Figure 6-2 have
these meanings:

LINE
	

This column contains the number of the assembled source code line.
It is provided for the programmer's convenience as an aid when
using the Editor to correct source code lines that are in error.

ADDR
	

This column contains the address of the assembly location counter

and indicates the address at which the first byte of object code is
to be loaded.

OBJECT 	This column contains the data bytes, (two hex characters per byte)
which are to be stored in sequential locations starting with the
address in the Address Column.

This column contains the error codes for the line of source code
represented in the Source column. The possible error codes are
discuseed in section 6.4.

SOURCE 	This column reproduces the source code as it was read by the
Assembler.

6-5

6.4 ASSEMBLER ERRORS

ASM provides an indication of errors in the source code by printing an alpha-
betic character in the error field of the listing. For convenience, the
erroneous lines of code are also displayed on the console output device,
unless the NOERR option is invoked with the ASM command. The error codes and
their interpretation are:

L -- Label Error. 	The label contains too mant' characters, contains invalid
characters, has been previously defined or is an invalid symbol.

0 -- Op-code Error. The op-code mnemonic has not been recognized as a valid
mnemonic.

R -- Register Field Error. The register field expression could not be evalu-

ated, or when evaluated, was lens than 0 or greater than 3, or the regis-
ter field was not found.

S 	Syntax Error. The instruction has violated some syntax rule.

U 	Undefined Symbol. A symbol which appears in the argument field has not

been previously defined.

A -- Argument Error. The argument has been coded in such a way that it cannot
be resolved to a unique value.

P -- Paging Error. 	A memory access instruction has attempted to address
across a page boundary.

W 	Warning. The Assembler has detected a syntactically correct but unusual

construction. The error will be counted but will not inhibit the produc-
tion of the object module.

In addition, ASM will display the following run-time error messages on the
console if it detects an error while trying to execute the ASM command:

MISSING INPUT FILE PARAMETER

The input file was not specified.
ASM ® is not a valid command.

UNACCEPTABLE INPUT DEVICE

The input file is not on a valid input device.
ASM LPT1 is not a valid command.

INPUT FILE ASSIGN ERROR - SRB STAT=XX

An I/O assign file error has occurred on the input file.
The SRB Status codes are listed in Appendix G of this
manual.

When the assembler has completed its analysis of the parameters and

has determined that they are acceptable it displays the following mes-
sage:

ASSEM VER 2.X1

6-6

6.5 LOADING AN ASSEMBLED PROGRAM

To load an object file assembled by the TWIN assembler, use the following pro-
cedure:

1) Insure that the hex object file exists on a disk loaded in one of the
disk drives and that SDOS is ,ready to accept commands.

2) Read the hex object file by entering the SDOS command

>RHEX OBJECTFILE

where OBJECTFILE is the name of the file that contains the hex object code.

When the loading process is complete, the SDOS prompt character > will be
displayed.

Hex object code programs created on paper tape outside the TWIN (for example,
by the 2650 cross-assembler) can be read into slave memory by the RHEX command
or to a disk file by using the SDOS COPY command (Section 4.7.6). Note that a
CTRL-Z character is required by the COPY command at the end of the tape in
order to terminate the COPY and close the file.

A binary load module can then be made from slave memory by using the MODULE
command (Section 4.9.3). A binary load module created in this way can be
loaded by the LOAD command.

6.6 THE ASSEMBLER TAB FEATURE

The TWIN assembler contains a tab feature which is useful in conserving disk
space. This is of particular value when large source files are being
assembled.

The assembler will interpret the CTRL-I character (ASCII 09H) in a source
line as a tab character and cause the listing produced by the assembler to tab
to the next tab position. These positions are at columns 8, 16, 24, 32, 40,
48, 56, and 64. Disk space is conserved since spaces are then not required
for readability.

In order for the CTRL-I character to appear in the source file, the Editor TAB
command must be used to define an alternate TAB character. Any CTRL-Is enter-
ed will then be passed to the source file. A disadvantage of this technique
is that readability of the source file will be poor, since the CTRL-I is a
non-printable character.

6-7

0

C

0

CHAPTER 7

PROM PROGRAMMING

7.0 INTRODUCTION

TWIN provides facilities for programming and creating programming tapes for
PROMS. Two types of hardware and software support are provided:

. PROM programming sockets on the TWIN front panel (see Figure 3-3).

. A Universal PROM Programming Interface to the DATA I/O Prom Program-
mer, Models 7 and 9.

7.1 ON BOARD TWIN PROM PROGRAMMING

TWIN hardware provides PROM programming support for the 82S115 bipolar fusible
link PROM and the 1702A MOS erasable PROM. These PROMs are programmed via the
sockets provided on the TWIN front panel along with the appropriate PROM pro-
gramming logic cards. Socket usage is as shown in Table 7-1 below.

Table 7-1. PROM Socket Usage

Socket
	

Pins
	

PROM

PROM #1
	

24
	

1702A

PROM #2
	

24
	

82S115

PROM #3
	

16
	

Unused

Some precautions should be taken in using these PROM sockets:

1. PROM power is always OFF whenever inserting or removing PROMs from
their sockets. Power to the socket is controlled by the PROM PWR
switch on the front panel. The PPWR indicator above the switch is
lighted when power is on.

2. PROMs are inserted in the correct sockets. Use of the wrong socket
can permanently damage the PROM.

3. PROMs are inserted correctly:

a. Push the socket lever up (it should normally be in this position).

7-1

b. Insert the PROM into the socket.

c. Push the lever down to clamp the PROM in the socket.

4. Align Pin 1 of the PROM with Pin 1 of the socket, adjacent to the
lever.

Three SDOS commands provide the software interface to on-board TWIN PROM pro-
gramming. They are:

Command 	 Description

RPROM 	 Reads contents of a PROM into
slave memory.

WPROM 	 Writes a specified portion of
slave memory to a PROM.

CPROM
	

Compares the contents of slave
memory with the contents of a
PROM.

7-2

7.1.1 RPROM

RPROM [slave address] [PROM name] [start áddress] [end address] [complement]

PURPOSE

The RPROM command reads the contents of the specified PROM from the TWIN front
panel into slave memory.

EXPLANATION

Data is read from the PROM from START ADDRESS through END ADDRESS and stored
into slave memory starting at SLAVE ADDRESS. 	If SLAVE ADDRESS is not speci-
fied, the data will be stored beginning at address 0. Default value for START
ADDRESS is 0 and for END ADDRESS is 01FF.

Valid PROM NAMEs are:

1702 	(do not enter 1702A)
825115

The default PROM NAME is 1702.

The COMPLEMENT flag specifies whether the data read should be complemented
before it is stored in slave memory. The COMPLEMENT flag may have the values:

0 - no complement
1 - complement data

The default is 0, no complement.

PRM Error Responses

7-Device write error
29-PROM power failure
30-Invalid parameter
35-Invalid start address
36-Invalid end address

7-3

7.1.2 WPROM

WPROM [slave address] [PROM name] [start address] [end address] [complement]

PURPOSE

The WPROM command programs the specified PROM from data in slave memory.

EXPLANATION

Data is written to the PROM at START ADDRESS through END ADDRESS from slave
memory starting at SLAVE ADDRESS. If no SLAVE ADDRESS is specified, data is
read starting at slave memory address 0. If START is not specified, the PROM
is programmed beginning at address 0. If END is not specified, the PROM is
programmed through address 01FF.

Valid PROM NAMEs are:

1702 	(do not enter 1702A)
82S115

The default PROM NAME is 1702.

The COMPLEMENT flag specifies whether the data in slave memory is to be com-
plemented before it is written to the PROM. The COMPLEMENT flag may have the
values:

0 - no complement
1 - complement data

The default is 0, no complement.

After each memory byte is written, the PROM address is read back and compared
with the byte written from slave memory. If the bytes are unequal, after sev-
eral retries at the verify, the PROM address and its contents are displayed in
the system console. Table 7-2 gives number of retries and write attempts for
each PROM.

7-4

Table 7-2. PROM Programming Retries

VERIFY
	

WRITE ATTEMPTS
PROM
	

RETRIES
	

BEFORE NEXT RETRY

1702A
	

16
	

5
82S115
	

8
	

0

PRM Error Responses

7-Device write error
29-PROM power failure
30-Invalid parameter
35-Invalid start address
36-Invalid end address

7-5

7.1.3 CPROM

CPROM [slave address] [PROM name] [start address] [end address] [complement]

PURPOSE

The CPROM command compares the contents of the specified PROM with the con-
tents of slave memory.

EXPLANATION

Data on the specified PROM from START ADDRESS through END ADDRESS is compared
with slave memory starting at SLAVE ADDRESS. If no SLAVE ADDRESS is speci-
fied, the compare begins at slave address 0. 	If START ADDRESS is not speci-

fied the PROM is read starting at address 0. If no END ADDRESS is specified,
the PROM is read through address 01FF.

Valid PROM NAMEs are:

1702 	(do not enter 1702A)
82S115

The COMPLEMENT flag specifies whether the data in slave memory is to be comp-
lemented before the compare. The COMPLEMENT flag may have the values:

0 - no complement
1 - complement data

The default is 0, no complement.

If the data read from the PROM and slave memory are unequal the slave memory
location, its contents, and the PROM address contents are displayed on the
system console.

PRM Error Responses

7-Device write error
29-PROM power failure
30-Invalid parameter
35-Invalid start address

36-Invalid end address

7-6

7.2 UNIVERSAL PROM PROGRAMMING INTERFACE

The Universal PROM Programmer Interface drive is designed for the Data I/O
Models 7 and 9 or compatible models to support either the Basic I/O (055-0000)
or the Remote Control interfaces (055-0092) that are supplied by Data I/O
Corporation as part of the Serial I/O package. The basic difference between
the two options lies in the mode of -data transfer and in the operator actions
required to program, verify or read a PROM device. Refer to the Data I/O
Programmer's Instruction Manual for specifica.

HARDWARE

The interface driver is capable of supporting data transfer operations between
the TWIN system and the stand-alone PROM programmer unit, which is equipped
with an RS232 I/O port. Hardware requirements are as follows:

Data I/O Model 7, 9

1. Serial I/O Interface (950-0045) with either Basic or Remote Control
I/O software option. Jumper JP3: Position "B" - No Echo.

2. Data format: Basic I/O - Binary. Translator format specification:
055-0000

Remote control I/O - ASCII Hex. Translator format
specification: 055-0092.

3. Baud Rate: 300 - Standard; 600 - Maximum

TWIN System

1. General purpose I/O card on Master side. Switch settings (see TWIN
System Reference Manual):

A4, A6, A7 - ON
A3, A5 - OFF
MSTR/SLV - MASTER
HIGH BAUD/TTY - HIGH BAUD

I/O connector - P2

2. Baud Rate: 300 - Standard; 600 - Maximum with jumper in J29

3. NOTE: When the Basic I/O Interface is used, Pins 35 and 38 of the UART
(D5) have to be disconnected from GND and tied to Vcc to achieve
a "Binary with no parity" data transmission format.

Data I/O Model 19

Configuration: 990-1902, Computer Remote Control

Software Package: Rev. C (and up)

Baud Rate: 600

TWIN System

Set baud rate on GPIO card to 600 (jumper in J29)

OPERATORS GUIDE 	7-7 	 REV B

Interconnection

The full duplex RS-232-C interconnection cable is shown in Figure 7-1.

NO TE

The RS232 interface as used by DATA I-0
does not conform to the RS232C standard.

SOFTWARE

SDOS must be configured with the optional RS232 driver. SDOS is shipped with
this configuration. However, if you have reconfigured it for some other op-
tional driver, you must run the MAK3ORS procedure before using this PROM pro-
gramming interface. MAK3ORS is described in Chapter 4 of this manual.

Because the program occupies both overlay areas and data transfers take place
via slave memory, no other SDOS jobs can be executed while the PROM command is
executing. The first part of the program, in Overlay Area 1, performs general
purpose tasks common to every programmer model. The second overlay area, con-
taining the actual driver, is dedicated to the specific tasks for a given pro-
grammer model. The software is designed to allow for future support of other
standard PROM programming units.

A single general purpose command is used to control the interface between the
TWIN and the DATA I/O unit.

Command 	 Description

PROM 	 Provides an interface between the TWIN
system and the DATA I/O PROM programmer.

OPERATORS GUIDE 	 REV B

7-8

1 GROUND

SEND DATA

RECEIVE DATA

REQUEST TO SEND

CLEAR TO SEND

DATA SET READY

SIGNAL GROUND

CARRIER DETECT

20 DATA TERM READY

5

GROUND

SEND DATA

RECEIVE DATA

REQUEST TO SEND

CLEAR TO SEND

DATA SET READY

SIGNAL GROUND

CARRIER DETECT

14 DATA TERM READY

DATA 1/0 MODEL 7, 9

25 PIN

9

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

EIA RS232C

FEMALE CONNECTOR

(MALE PINS)

TO PROGRAMMER

TWIN SYSTEM

25 PIN

21

23

25

2

4

6

8

10

12

16

18

20

22

24

26

EDGE CONNECTOR

TO GPIO CARD

2

6

7

8

11

13

7

9

3

4

5

15

17

19

1

3

Figure 7-1. TWIN Data 1/0 Interconnection Cable

OPERATORS GUIDE 	 REV B

7 -9

7.2.1 PROM

PROM [M] [OP] [Al] [A2] [A3] [Nl] [C],

PURPOSE

The PROM command provides a software interface between data in slave memory
and the DATA I/O PROM programmer.

EXPLANATION

The parameters are defined as follows:

M specifies which programmer will be used and it must always be given; no de-
fault value is established.

M = DB - Data I/O Model 7 and 9 with Basic I/O interface.
M = DR - Data I/O Model 7 and 9 with Remote Control interface.

OP determines the type of operation to be performed:

OP = R - Read (list)
OP = W - Write (program)
OP = V - Verify (compare)

The default value is V, Verify.

Al, A2, and A3 represent address values in Hex format, where:

Al = first address in slave memory to read data into, program from or com-
pare with. Legal values are from 0-EFFE. Default = 0.

A2 = first address in PROM to read, program or compare. Legal values are
0-3FFF. Default = 0.

A3 = last address of PROM to read, program or compare. Legal values are
0-3FFF. Default = 3FFF.

NI controls which nibble (4 bits) of the data byte in the TWIN common memory
is being processed: the lower nibble, higher nibble or both. This parameter
is intended to be used with 4-bit PROM's only.

NI = 0, both nibbles (entire byte)
NI = 1, lower (first) nibble
NI = 2, upper (second) nibble

The default is 0, both nibbles.

7-10

C determines whether the data in PROM or slave memory should be complemented.

C = 0, data is not complemented

C = 1, data is complemented

The default value is 0, not complemented.

Due to the relatively large number of parameters, their actual value is dis-

played on the system console if any of them defaults. The operator starts or
aborts the program execution in response to the question "EXECUTE?" by typing
a character "Y" for yes, or "N" for no, respectively, followed by a carriage
return (CR). Note that any input other than Y or N is an error.

Each request for operator assistance is displayed on the system console.

Basic I/O (M=DB)

When this software option is installed in the DATA I/O programmer unit, the

command line parameters have virtually no control over its operation, there-
fore, several restrictions apply:

1. PROM starting address (A2) must be 0.

2. The value of the last PROM address (A3) determines the number of data

bytes to be transmitted and it always should be less than or equal to
the actual PROM size.

CAUTION

If A3 is greater than the actual PROM size,

READ operations will cause the system to
hang up. To recover from this condition,
enter ESCAPE.

3. The driver is capable of transmitting data in straight binary format
between the programmer memory and the TWIN system. All other PROM
programmer operations have to be selected manually by the operator at
the DATA I/O programmer unit itself.

Remote Control I/O (M=DR)

This interface performs all necessary operations between TWIN and programmer
automatically, such as load PROM content, blank check, etc. After completing
the data transmission in the Write mode (OP=W), you choose either to program a
device or terminate the process by typing the character Y or N on the system
console (command request "PROGRAM?"), respectively. If the answer is "Y" and
the PROM device is programmed successfully, the above command request will be
displayed again. This enables you to program several devices without re-
entering the command line.

After a task is completed or an "N" is typed for a command request, the
programmer will be reset to manual mode.

7-11

Since the time it takes to transmit 1K bytes of data is relatively long with a
low baud rate, a BELL signal is sent to the system console for each data
record indicating proper operation.

PRM Error Responses

7-Device write error, Programhier did not accept data
30-Invalid parameter, N >2 or C >1
32-Too many parameters, Number of parameters >7
34-Invalid address, Al, A2 or A3 is not in Hexadecimal form or is more

than four characters in length.
36-Invalid end address, A3 > 3FFF
37-Invalid transfer address, Al + (A3-A2) >64K
52-Invalid device, M parameter invalid
54-Invalid mode, OP parameter invalid
62-Device not operational, GPIO is not installed or properly selected

Special Messages

Messages requesting operator assistance are self-explanatory.

In case of an unsuccessful "Verify" operation, the following message will be
displayed on the system console for Remote Control I/O only, and then process-
ing is aborted:

PRM ADDRESS = xxxx MEM = xx PROM = xx

Where:
	

ADDRESS = The first memory address that failed

MEM = Data in slave memory

PROM = Data in PROM device

When a PROM device programming is unsuccessful the following message is dis-
played (the PROM content and address can be displayed by performing a "verify"
operation):

FAIL *PRM* EOJ

7-12

SAMPLE RL*6

REMOTE COPTTR(I I/O

> PROOI DR 8 8 3FF
OP-41

8243
R>3FF

E1ECUTE?

ON DATA I/O: HOLDING DOW 1/8 KEY, PASS E>ECUTE
PROG~
Y
PROGRAM?
N
4PRM* ECU

ASSUME: DUN COMMON MEMORY RT WAAKS 	FROM=FT

> PROM DR V 8 8 3FT 8 0
ai DATA 1/0: HOLDING DON I/O KEY, PRESS EXECUTE
*POP ADDRES54000 MEM.88
pot

EOJ

81151C 1/0

> PRCII D8W88 3FF 88
IN DATA I/O
SELECT 10F0
HOLDING DCAN I/O KEY, PASS DECUTE
ON SYSTEM CONSOLE. RETURN

•PRMEOJ

> PROM DEI R 8 8 3FF 8 8
__OM DATA 1/0

SELECT PROGRAM
ON SYSTEM CONSOLE REM

111111OLDINGDOW 1/0 KEY. PRESS DIECUTE

*PR» Eli!

> PROOI DB V 8 8 3FF 8 8

' 	SELECT VERIFV
IF VERIFICRT1ON PAILS,'V" INDICATOR ON DATA I/O LINKS

JNOI DING DOWN .I/O KEWIRESSDECUTE
ON SYSTEM UNSCLE: REM

r_wPRIDt EDI

Figure 7-2. Sample Session Universal PROM Programmer

7 -13

SAMPLE SESSION USING COMPUTER REMOTE MODELS 17 AND 19

PROM DR W 0 0 3FF

OP=W

A1=0

A2=0

A3=3FF

NI=0

C=0

EXECUTE?

Y

ON DATA I/O: SELECT Fl, PRESS START

PROGRAM?

Y

PROGRAM?

N

APRMIt EOJ

7-14

OPERATORS MANUAL 	 REV B

CHAPTER 8

THE DEBUGGER

8.0 INTRODUCTION

The Debugger is a combination of system software and unique hardware features

which help the user debug programs in four ways:

1) It displays memory and register contents, as well as Debug status, and
allows these values to be modified.

2) It controls program execution and allows the user to request control
at specified locations using breakpoints.

3) It traces program execution and displays relevant machine stater.

4) It allows debugging in the user's prototype system.

To accomplish these functions, the Debugger monitors the user program progress

and state and saves necessary information. The monitoring process requires
that from time to time, the Debugger must take control of the system. For
this reason, user programs will run approximately 14% slower when they are
under Debug control.

The Debugger uses breakpoints to control user program execution. A breakpoint
is a location in the user program where the user wishes to have the Debugger
take control of the system.

The Debugger can do a trace to observe program execution. The entire program

or portions can be traced. As each instruction is executed, various para-
meters that indicate the system state are displayed.

The Debugger is also used to debug user developed hardware. The TWICE cable
allows the user to connect the slave CPU hardware directly to the user devel-
oped system where in-circuit-emulation, ICE, may be performed.

There are three important facts that require explanation before discussing the

Debugger:

1) The special SDOS keys, ESC and SPACEBAR retain their meanings while

the Debugger is executing. Their use is discussed in Section 4.4.
Note in particular the impact of the ESC key on the EXAM command.

2) If it is necessary to change the ICE mode for a Debug session, the

change must be made before the Debugger is invoked. To change the ICE
mode, execute the ICE command, which is described in Section 4.6.3,
System Options ICE.

8-1

Executable programs are stored in two formats:

a) Hex format. Two hex characters are stored for each byte of object

code produced. The Absolute Assembler ASM creates hex format
files. RHEX is the SDOS command used to read hex format files
into slave memory. Hex format is described in Appendix C.

b) Binary format. One byte df data is stored for each byte of object

code. Both the relocatable assembler, RASM, and the SDOS command,
MODULE, create binary format files. LOAD is the SDOS command used

to read binary format files into slave memory.

If you are familiar with Debuggers and their commands, Sections 8.1, THE DEBUG

PACKAGE; 8.2, THE DEBUG COMMAND; 8.4 and 8.5, DEBUG COMMANDS; and 8.6, the
TWICE CABLE are recommended.

If you are not familiar with Debuggers, the above sections plus Section 8.3,
SAMPLE DEBUG SESSION, are recommended.

8.1 THE DEBUG PACKAGE

The Debugger is a subsystem of the SDOS system that is enhanced through some
TWIN hardware features that allow the Debugger to control slave CPU execu-
tion. When the Debugger is executing, the user has a subset of the SDOS com-
mands at this disposal.

When the user invokes the Debugger, a Debug control program is loaded into a
Master Memory Overlay Area 1. 	In addition, a small utility program package
which resides in slave memory (see System Description, Software) is used.
This package, which is 256H bytes long, is used to save and restore the
slave CPU registers when using GO and Breakpoints, and serves as the interface
between the Master and Slave CPU's.

After the Debug control program has been loaded, the SDOS prompt character >
is issued to the console. Whenever this prompt is displayed, the Debugger is
ready to accept commands. The commands available to the Debug user are listed

in Table 8-1. Note that several of the primary functions of the Debugger,
such as examining and altering memory (the EXAM command) and execution control

(the GO and XEQ commands), are SDOS commands. The other SDOS commands are not
available when in Debug.

To start a user program while under Debug, load your program into slave memory
via the SOOS 'LOAD' or 'RHEX' command. Start the DEBUG package, by entering
the DEBUG command. Select the desired DEBUG options, such as Trace or Break-
point.

8-2

Table 8-1. COMMANDS AVAILABLE IN DEBUG

SYSTEM CONTROL*

ABORT
GO
LOAD
XEQ

FILE MAINTENANCE*

ASSIGN
CLOSE
DELETE

SYSTEM OPTIONS*

SYSTEM

BREAKPOINT

BK PT
CLBP

STATUS

DSTAT
STATUS*
TRACE

SYSTEM

RESET
SET

MEMORY*

DUMP
EXAM
PATCH

* These commands are also available when not under Debug control.

Care must be taken not to overlay the utility program package when LOADing
your program.

When the SDOS prompt character is not displayed on the console and you want
control, the following procedure should be followed:

1) Depress the 'ESC' key twice. If the trace mode is active, a single
depression is sufficient.

2) When the SDOS prompt character appears, enter the desired commands.

3) To continue your program, as after a breakpoint, type 'GO'. The pro-

gram will continue from the point at which it was interrupted.

When the user program is stopped, the SDOS prompt character is displayed and
the system becomes available for input commands, according to the following
conditions:

1) Console control was requested by depressing the ESC key.

2) The user program has encountered a breakpoint.

3) The user program has executed a HALT instruction.

4) The user program has executed one instruction when in the TRACE STEP
mode.

5) The user program has reached a normal end of job condition.

The only way for you to terminate the Debugger is to use the SDOS ABORT com-
mand. This may be accomplished by entering ABORT DEBUG or ABORT *. In either
case, both DEBUG and the user program are terminated.

8-4

8.2 THE DEBUG COMMAND

DEBUG [device]

This command causes the Debug package to be loaded. DEVICE is the output
device or disk file to which the Debug output displays will be written. The
DEVICE default value is CONO.

CAUTION

The format of DEBUG is changed from SDOS
2.0. The DEBUG command now uses only one
parameter.

8-5

)

8.3 SAMPLE DEBUG SESSION

Let's monitor the sample program shown in Figure 8-1 in order to examine some
of the Debug features. The .sample program was assembled into hex object code
format using the absolute assembler ASM. It was written to a disk file named
DEMO, and has a starting address of 3000H.

Because the TWIN system is in 2650 slave mode OFF by default, an initial ICE
command to set ICE mode is not required.

To load the hex object code from file DEMO into slave memory, enter the SDOS
command

RH EX DEMO

Note that if the file DEMO contained a binary load module produced from ASM
output by the MODULE command or by the relocatable assembler, RASM, we would
use LOAD rather than RHEX to load the file.

Now load the Debug package by entering

>DEBUG

Now the sample program object code resides in slave memory and the Debug con-
trol program is located in Master Overlay Area 1 ready to accept Debug com-
mands.

Our sample program uses Registers 0 and 1. If we wish to assign these regis-
ters specific values, we use the SET command. To set Register 0 to 0 and
Register 1 to 1, enter

>SET RO 0 1

RO specifies the register in which to put the first data value of 0. The sec-
ond data value of 1 is loaded into Register 1. Use the DSTAT command to veri-
fy that these values were properly loaded into the registers.

>DSTAT
P=0000 	 R=00 91 00 00 00 00 00 00 00

1 	2 	3 	4 	5 	6

The one line display immediately below the command provides:

1. Slave CPU program counter at the time the last slave CPU instruction
was executed;

2. Breakpoints currently active in the Debugger. Since we have not set
any breakpoints, no information is displayed;

3. Register 0 value;

4. Values of Registers 1, 2, and 3 of bank 0;

5. Values of Registers 1, 2, and 3 of bank 1;

6. PSU and PSL values.

8-6

TWIN ASSEMBLER VER 2.X1
	

PAGE 0081

LINE ADDR OBJECT E SOURCE

0001
	

R8 	EQU 	0

0882 OM
	

R1 	EQU 	1
5 5 5 3

0004
8005 3 	81
0006 3001 8401
8887 35,53 EO@

3005 987A
8889 1007 1877
0010 3000

ORG 	H'3888'
TOP AWZ R1
LOOP ADDI,R0 1

COMI,R0 0
BCFR,0 LOOP
BCTR,0 TOP
END 	TOP

ADD REGISTER 1 TO REG
INCREMENT RO
COMME Re WITH 0
IF COMME FAILED, BR
IF COMPRRE SUCCEEDED,

55.55

'Are:

TOTAL ASSEMBLY ERRORS = 8800

F igure 8-1. Sample Program to Debug

8-7

Suppose we wish to trace the execution of DEMO. To enable the trace function
and trace all instructions one step at a time, enter the TRACE command speci-
fying the ALL and Step options:

>TR A,,,S

The All mode results in output of a ;line of trace information to the console
for every instruction executed by the slave CPU. The single Step mode returns
control to the operator after each slave CPU instruction is executed. Since
we wish to trace the entire program rather than instructions in a specific
address range, we entered three commas to indicate that those two parameters
are missing.

The Debug environment is now defined, and we are ready to execute the pro-
gram. Because the object code was initially loaded with the RHEX command, the
starting address, 3000, must he specified at this time also. To begin program
execution, type:

>GO 3000

After the GO command is executed, the Debugger, now in single step mode,
assumes control and produces the trace display below.

LOC INST 	MNEMON 	XR U 	OPAD IADD IV EADD RO R1 R2 R3 R4 R5 R6 PU PL
3000 81 	ADDZ,01 	 01 01 00 00 00 00 00 00 40

The trace display headings are defined as follows:

LOC 	is the location of the last instruction executed.

INST 	is the value of the last instruction executed.

MNEMON 	is the instruction mnemonic, including the register or
condition code value, if required.

XR 	is the index register, if any, for the instruction.

U
	

If U is +, auto increment indexing is performed for an
absolute addressing instruction, or a forward address is
calculated for a relative addressing instruction.

If U is -, auto decrement indexing is performed for an
absolute addressing instruction, or a backward address is
calculated for a relative addressing instruction.

OPAD 	is the operand value or operand address.

IADD 	is the indirect address value.

IV 	is the index register value.

EADD 	is the calculated effective address for the last instruc-
tion.

8-8

RO 	 is the value of RO.

R1,R2,R3 	 are the values of R1, R2, and R3 in bank 0.

R4,R5,R6 	 are the values of R1, R2, and R3 in bank 1.

PU 	is the value of the, Program Status Word Upper.

PL 	is the value of the Program Status Word Lower.

Note that if you are executing this sample session as you read, only the

values shown for RO and R1 will be exactly as shown in this section. This is
because we did not specify data for the other registers, and they could con-
tain any random data at this point.

To single step through the next instruction, simply enter the GO command with-
out an address parameter:

Another line of trace information will be displayed. To continue single
stepping in this manner, we must type the GO command after each trace display

line.

Suppose, instead, we wish to trace all instructions executed, but without sin-
gle stepping through each instruction, a very time consuming process. We can
change the trace mode by reentering it with new options. To trace all in-
structions with continuous execution, type

>TR A

When the next GO command is executed, the Debugger takes control of the slave
CPU after every slave CPU instruction is executed, but after the line of trace
information is displayed, control is returned back to the slave CPU, and not
to us. The resultant output after typing GO is shown in the complete sample
session in Figure 8-2.

We can see that the program is properly executing the loop at location 3001,
but we are concerned about what will happen when location 3007 is executed.
This is accomplished by means of a breakpoint set at location 3007. First,
however, the current trace must be cancelled. To cancel the current trace,
press the ESCAPE key, then procede to set the breakpoint at location 3007
using the BKPT command.

>G 3000

3001 8401 	A 	(ESCAPE key depressed to cancel trace)

»» BKPT 3007

Breakpoints are used to control execution by commanding the Debugger to take
control whenever the specified address is referenced.

8-9

01
00
3001
01
00
3001
01
00
3001
01

=3001

=3001

=3001

03
04
04
04
05
05
05
06
06
06

01
01
01
01
01
01
01
01
01
01

77
77
77
77
77
77
77
77
77
77

00
00
00
00
00
00
00
00
00
00

> RHEX DEMO
RHX EOJ

> DEBUG

> SET RO 0 1

:> DSTAT
P=3000
	

R=00 01 77 00 D5 55 75 00 40

> TR Arr,S

• GO 3000
LOC INST

	
MNEMON XR U OPAD IADD IV EADD RO R1 R2 R3 R4 R5 R6 PU PL

3000 81
	

ADDZ,01 	 01 01 77 00 D5 55 75 00 40

01 	02 01 77 00 D5 55 75 00 40

00 	02 01 77 00 D5 55 75 00 40

- 3001 	=3001 02 01 77 00 D5 55 75 00 40

> G
3001 8401

3003 E400

> G
3005 987A

> TR A

• G 3000
3000 81
3001 8401
3003 E400
3005 987A
3001 8401
3003 E400
3005 987A
3001 8401
3003 E400
3005 987A
3001 8401

ADDIr00

COMIr00

BCFR,00

ADDZ,01
ADDIr00
COMIr00
BCFR.00
ADDIr00
COMIr00
BCFR.00
ADDIr00
COMIr00
BCFR.00
ADDIr00

D5 55 75 00 40
D5 55 75 00 40
D5 55 75 00 40
D5 55 75 00 40
D5 55 75 00 40
D5 55 75 00 40
D5 55 75 00 40
D5 55 75 00 40
D5 55 75 00 40
D5 55 75 00 40

>>BKPT 3007

> TRACE OFF

3007 1877 	BCTR,00 	- 3000
3007 BREAK

• SET R1 FA

=3000 00 01 77 00 D5 55 75 00 21

• DSTAT
P=3007 BP=3007 WR
	

R=00 FA 77 00 D5 55 75 00 21

:> TRA J

> G 3000
3005 987A 	BCFR,00
3005 987A 	BCFR,00
3005 987A 	BCFR,00
3005 987A 	BCFR,00
3005 987A 	BCFR,00
3005 987A 	BCFR,00
3007 1877 	BCTR,00
3007 BREAK

FR FA 77 00 D5
FC FA 77 00 D5
FD FA 77 00 D5
FE FA 77 00 D5
FF FA 77 00 D5
00 FA 77 00 D5
00 FA 77 00 D5

55 75 00 80
55 75 00 80
55 75 00 80
55 75 00 80
55 75 00 80
55 75 00 21
55 75 00 21

3001 	=3001
3001
	

=3001
3001
	

=3001
3001
	

=3001
3001 	=3001
3001
	

=3001
3000
	

=3000

• DSTAT
P=3007 BP=3007 WR

> CLBP

> DSTAT
P=3007

> ABORT DEBUG

R=00 FA 77 00 D5 55 75 00 21

R=00 FA 77 00 D5 55 75 00 21

Figure 8-2. Sample Debug Session

8-10

We will allo turn off the trace before resuming program execution, since we

would have to wait for a larger number of trace lines to be displayed before
3007 is executed. Execution is resumed from the point at which it was inter-
rupted by the ESCAPE key above.

> TRACE OFF

>G

3007 1877 BCTR,00 	- 3000 	=3000 00 01 00 00 00 00 00 00 21
3007 BREAK

The Debugger monitors the slave program execution, and when the instruction at
3007 is executed, a line of trace information is displayed and a breakpoint
message is output to indicate that the breakpoint was encountered. Note that
the effective address to which control will be transferred, EADD, is 3000.
The prompt character indicates that control has been returned to us.

Now we wish to monitor the execution of all branch instructions. First, how-

ever, let's set Register 1 to FA to cut down the number of times the loop will
execute, and verify that Register 1 is correct. Then, change the trace option
to specify trace of jump instructions only. The proper sequence of commands
to accomplish these tasks is

>SET R1 FA

>DSTAT

P=3008 BP=3007 WR 	R=00 FA 00 00 00 00 00 00 21

>TRA J

This time, DSTAT contains information about active breakpoints. BP=3007

specifies that a breakpoint is set at address 3007, and the WR indicates that
either a write or a read to location 3007 will cause a break.

When the slave program is restarted with the GO command, the Debugger displays
the trace information for all branch instructions executed. The generated
trace output is shown in Figure 8-2. Again, execution stops when the break-
point at 3007 is encountered; the BREAK message informs us of this:

>G 3000

3007 BREAK

To clear a breakpoint, enter the CLBP command:

> CLBP 3007

> DSTAT

P=3007
	

R=00 FA 00 00 00 00 00 00 21

8-11

We are finished with our sample Debug session. The Debugger must be exited
using the SDOS command ABORT:

>ABORT DEBUG

8-12

8.4 DEBUG SDOS COMMANDS

This section lists commands that are used with the Debugger. Eight commands
are primarily used with the Debugger, but may be used under SDOS. These com-

mands are:

COMMAND NAME
	

DESCRIPTION

GO
	

Is used to start user programs.

LOAD
	

Is used to read binary load files into slave
memory.

XEQ 	Combination LOAD and GO.

DUMP 	Displays contents of slave memory.

EXAM 	Examines and/or alters slave memory.

PATCH 	Alters slave memory.

STATUS 	Display status of slave CPU, I/O and job being
executed by it.

8-13

8.4.1 GO

GO [address]

PURPOSE

The GO command causes control to be passed to ADDRESS in slave memory.

EXPLANATION

This command causes execution of a user program to begin or resume after a
breakpoint occured.

If ADDRESS is present, control is passed directly to that location in the
slave memory. If ADDRESS is not present, either control is passed to the
start address of a previously LOADed module or execution continues from the
last point stopped in the Debugger.

DOS Error Responses

37-Invalid go address

8-14

8.4.2 LOAD

LOAD {filename [/disk drive]} [parameter 1,...]

PURPOSE

The LOAD command loads the binary load module FILENAME into the slave memory.

EXPIANATION

FILENAME will be loaded into the slave memory starting at the location —)eci-

fied at the time the load module was created. The program may be ex(,:uted
simply by typing GO. LOAD may only be executed with ICE mode OFF.

The PARAMETER fields may be used when your slave program calls for input data
to be entered in a command line. Parameters entered in this manner can be
retrieved with the SVC Get Parameter.

The binary load module must have been created by the MODULE command or the
relocatable assembler RASM and link editor LINK. RASM and LINK are described
in a separate manual named TWIN 2650 Relocatable Assembler Manual, publication
number TWO9007000.

DOS Error Responses

6-Device read error

14-Invalid input device
48-Load file not found
49-Load file assign failure or missing file name
50-File not a load module
51-Invalid load request: a) ICE mode is on

b) Slave job is executing

8-15

8.4.3 XEQ

2ig.g {f i le name [/disk drive]} [parameter 1,..:]

PURPOSE

The XEQ command causes a binary load module to be loaded into slave memory and

exectued.

EXPLANATION

The XEQ command is equivalent to the two commands LOAD FILENAME followed by GO.

FILENAME must have been created by either the MODULE command, or the relocat-
able assembler, RASM.

DOS Error Responses

6-Device read error
14-Invalid input device
48-Load file not found
49-Load file assign failure
50-File not a load module
51-Invalid load request

OPERATORS GUIDE 	
8-16
	 REV B

8.4.4 DUMP

DUMPIA1 [A2] [device]

PURPOSE

The DUMP command copies the contents of the specified locations to the system

console or other device.

EXPLANATION

The DUMP command causes the contents of slave memory to be displayed on
DEVICE, beginning with address Al. The display consists of two hexadecimal

characters representing the contents of each byte displayed. If A2 is not
specified, then only 16 bytes of data are displayed. If DEVICE is not speci-
fied, the data will be displayed on the system console.

Addresses Al and A2, if specified, are adjusted in the following manner. The
low order hexadecimal character is replaced with 0. For example, 3F3E is
altered to 3F30. Then, A2 is replaced by A2 + 10H. This has the effect of
lowering Al to the next lowest multiple of 10H and raising A2 to the next
highest multiple of 10H. The contents of memory from adjusted Al to A2 is

then displayed.

If ICE mode 2 is selected, user prototype memory is dumped.

Example:

To dump the contents of slave memory locations 3F3E through 4001, enter
the command

> DUMP 3F3E 4001

The data from memory locations 3F30 through 4010 is displayed as shown:

	 0 1 2 3 4 5 6 7 8 9 A B C D E F

3F30=FF FF 00 FF FF FF FF FF FF FF FF FF 00 FF FF FF
3F40=FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF
3F50=00 FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF
3F60=FF FF FF FF 00 FF FF FF FF FF FF FF FF FF 00 FF
3F70=FF FF FF FF FF FF FF FF 00 FF FF FF FF FF FF FF
3F00=00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*4000=00 FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF

8-17

DMP Error Responses

07 - Device write error
17 - Output device assign failure
31 - Parameter required
35 - Invalid starting address (Al)
36 - Invalid ending address (A2)

8-18

8.4.5 EXAM

EXAM {address}

PURPOSE

The EXAM command displays the data byte at the specified address and allows
the data to be altered.

EXPLANATION

The EXAM command causes the contents of the slave memory location ADDRESS to
be displayed on the console. You then have several options. You may

a) display the next sequential byte;

b) display the current location and its contents;
c) replace the current memory byte with entered data and display the next

sequential memory byte;

d) terminate the EXAM command.

After the initial memory byte is displayed, press any of these keys to initi-
ate the corresponding function.

122 	Resultant EXAM Action

SPACE 	Display the next memory location.

LINEFEED or RUBOUT 	Go to the next line and then display the current

location and its associated data byte.

HEX DATA PAIR 	Replace the current memory location with the hex
data pair, then display the next sequential byte.

RETURN 	Terminate the EXAM command, leaving any altered

memory locations in the altered state.

ESC 	Same as RETURN.

The display of memory bytes will automatically go to the next line and display

the location and its data byte whenever the location to be displayed is a mul-
tiple of 10H.

If ICE mode 2 is selected, user prototype memory is examined and altered.

8-19

Examples:

If locations 3000-3003 contained 00, 01, 02, 03 respectively, the EXAM command
could be used as follows. User interaction is underlined.

> EXAM 3000
3000=00 01 02 03 0

When the space bar was entered, the next sequential byte was displayed. When
return was entered, the command was terminated.

To increment each location, this sequence could be used:

> EXAM 3000
3000=00-01 01-02 02-03 03-04 ®

The dash is provided by the EXAM command when a hex data pair is entered.

EXM Error Responses

31-Parameter required
35-Invalid start address
39-Invalid hex character
59-Memory write error
68-Attempt to write past top of available memory

8-20

8.4.6 PATCH

PATCH {address} ;hex-string

PURPOSE

The PATCH command alters slave memory with the specified hexadecimal data.

EXPLANATION

The PATCH command allows you to alter slave or user prototype memory. ADDRESS
is a hexidecimal address constant. HEX-STRING is a string of hexadecimal
digits from 2 to 72 digits in length.

The contents of slave memory starting at ADDRESS is replaced with the value
HEX-STRING. This replacement is performed on a byte-to-byte basis.

If ICE mode 2 is selected, user prototype memory is patched.

Example:

To patch three slave memory locations starting at address 3000, enter

>PATCH 3000 3F001E

The data at address 300.0 is replaced with 3F, 3001 with 00 and 3002 with 1E.

PAT Error Responses

31-Parameter required
34-Invalid address
39-Invalid hex character
59-Memory write error
68-Attempt to write past top of available memory

8-21

8.4.1 STATUS

STATUS

PURPOSE

The STATUS command displays the current status of the slave processor on the
system console.

EXPLANATION

The STATUS command gives the status of the program being executed by the slave
CPU.

The name of the program running under the slave CPU, the state of the program,
and the channel assignments of the program are output to the system console.
The status of any COMMAND FILE currently in progress is displayed. The table
below lists the possible values for STATUS information.

f ACTIVE
SLAVE (CHIP NAME) IS 1 IDLE

LOADED
EXECUTING
IN I/O WAIT
SUSPENDED
UNDER DEBUG CONTROL

(SLAVE JOB NAME) IS

CHAN (N0) ASSIGNED TO (DEVICE) 	(OPEN)
(READ)
(WRITE)

CHAN (N7) ASSIGNED TO (DEVICE) 	(EOF)

J IN PROGRESS
COMMAND FILE (NAME) IS 1 SUSPENDED

8-22

8.5 DEBUG COMMANDS

Six commands are unique to the Debugger and can only be used after the DEBUG
command has been executed. These commands are:

Command Name 	 Description

BKPT 	Sets hardware breakpoints.

CLBP 	Clears breakpoints.

RESET 	Resets the slave CPU.

SET 	Sets the slave CPU registers and PSW.

DSTAT 	Displays slave CPU Debugger status.

TRACE 	Allows for trace of slave CPU execution.

All errors reported by these commands are tagged as *DEB* errors.

(

8.5.1 BKPT

BKPT {address} [option]

PURPOSE

The BKPT command causes a hardware breakpoint to be set for the slave CPU at
ADDRESS.

EXPLANATION

The BKPT command suspends program execution after a read or write operation is

performed at the specified ADDRESS.

OPTION may either WRITE or READ. If WRITE is specified the break occurs only
when there is an attempt to write to the specified address. If READ is speci-
fied, the break occurs only when there is an attempt to read the specified
address. The default OPTION causes the break to occur whenever a read or

write to the specified address is attempted.

When the breakpoint ADDRESS is accessed during program execution, a trace line
is displayed on the debug output device, followed by a breakpoint message on

the system console.

Up to two breakpoints may be active in the system. However, a breakpoint
address identical to one already entered may be set; for example, to change
the OPTION.

LOCAL Error Response

TOO MANY BREAKPOINTS - Two breakpoints are already active.

DEB Error Responses

30-Invalid Parameter
31-Address required
32-Too many parameters
34-Invalid address

8-24

8.5.2 CLBP

CLBP [address]

PURPOSE

The CLBP command clears a breakpoint set by the BKPT command.

EXPLANATION

The CLBP command is used to clear breakpoints set at specified addresses in
slave memory.

If ADDRESS is specified, the breakpoint at the specified address is cleared.
If ADDRESS is not specified, all breakpoints are cleared.

LOCAL Error Response

BREAK POINT NOT ACTIVE - The specified ADDRESS is not an active break point

address

DEB Error Responses

32-Too many parameters
34-Invalid address

8-25

8.5.3 RESET

R ESET

PURPOSE

The RESET command allows the slave CPU hardware to be set to a known beginning
state.

EXPLANATION

The RESET command causes a RESET pulse to be applied to the slave processor.
A subsequent GO command causes execution to begin at address 0 if no address
is specified.

The RESET command has no immediate visible effect.

DEB Error Responses

None

8-26

8.5.4 SET

SET
 {

Rm D1 [...Di]
PSU 01 [D2]
PSL D

PURPOSE

The SET command allows you to reassign hexadecimal values to the slave CPU
registers or program status word.

EXPLANATION

The SET command causes the specified slave CPU registers to be set to the hex-

adecimal data constants Di. The Di must be hexadecimal numbers in the
range 0 to FF.

SET Rm Di... causes the slave CPU general registers beginning with register
Rm to be set to the values specified. m is an integer 0 through 6, so that Rl
identifies register 0, etc. Rm is set to the first data constant Dl, Rm+1 is

set to D2, and so forth. Only the registers for which values are specified
are changed.

SET PSU Dl causes the PSU of the slave CPU to be set to Dl. Set PSU Dl D2
causes the PSU to be set to Dl and the PSL to be set to D2.

Set PSL D causes the PSL of the slave CPU to be set to the value D.

The registers of the slave CPU are designated by the following notation. PSU
and PSL may not be referred to as R7 and R8.

Rm 	Register

RO 	Register 0

Rl 	Bank 0 Register 1
R2 	Bank 0 Register 2
R3 	Bank 0 Register 3
R4 	Bank 1 Register 1
R5 	Bank 1 Register 2
R6 	Bank 1 Register 3
PSU 	Program Status Upper
PSL 	Program Status Lower

If an error is detected anywhere in the commmand line, none of the parameters

are proceseed.

8-27

Examples:

> SET R2 4F 23 '51

sets Register 2 in Bank 0 to the value 4F, Register 3 in Bank 0 to the value
23, and Register 1 of Bank 1 to the value 51.

It is also possible to set the PSU and PSL in this manner:

>SET R6 FF AO BO

sets Register 3 of bank 1 to FF, the PSU to A0, and the PSL to BO.

DEB Error Responses

30-Invalid register parameter or parameter missing
32-Too many parameters
43-Invalid data parameter
58-System failure in accessing slave CPU

8-28

8.5.5 DSTAT

DSTAT

PURPOSE

The DSTAT command displays the current status of the debugging session.

EXPLANATION

The DSTAT command causes the Debug status to be displayed in a single line on

the Debug output device. The slave CPU's last instruction address, the active
breakpoints, and the slave CPU's register contents are displayed. The format
of the DSTAT display is as follows:

> DSTAT

P=OBOA BP=0900 WR 0A00 WR R=FF 	00 00 02 	04 05 06 	00 08
1 	2 	3 	2 	3 	4 	5 	6 	7

1 gives the location of the last instruction executed by the slave CPU.

2 gives the address of the active breakpoints.

3 informs the user what conditions are necessary for the break to occur.

Note that up to two breakpoint addresses and conditions may be listed.

If a W is present, a break will occur every time a write is attempted
to the associated location.

If an R is present, a break will occur every time a read is attempted
to the associated location.

If a WR is present, a break will occur every time a read or write is

attempted to the associated location.

4 gives the contents of RO.

5 gives the contents of Registers 1, 2 and 3 in Bank 0.

6 gives the contents of Registers 1, 2 and 3 in Bank 1.

7 gives the contents of the Program Status Word Upper.

8 gives the contents of the Program Status Word Lower.

8-29

DEB Error Responses

7-Device write error
58-System failure in accessing slave CPU

8-30

8.5.6 TRACE

OFF
TRACE {ALL [Al A2] [STEP]

IMF [Al A2] [STEP]

PURPOSE

The TRACE command allows you to monitor program execution.

EXPLANATION

The TRACE command determines the Debug trace mode. TRACE options have the
following meaning:

0FF - The trace is turned off. No trace information is displayed

ALL - Trace information is displayed for all instructions executed by the
slave CPU. ALL is the default TRACE option.

JMP - Trace information is displayed for branch instructions whether or
not the branch is taken.

The trace display is printed on the debug output device as specified by the
DEBUG command, or to CONO if none was specified.

When Al and A2 are specified, the TRACE function will be performed as speci-
fied by the option, but trace information is displayed only for the instruc-
tions executed between Al and A2. Al and A2 are hexadecimal address constants
in the range 0 - FFFF. A2 must be equal to or larger than Al. The default
value for Al is 0. The default value for A2 is FFFF.

The STEP option specifies single step mode. After each trace line is dis-
played, control is returned to the system console, and the GO command must be
entered to execute the next instruction. Note that STEP does not have meaning
with the 0FF option.

CAUTION

The STEP option has been moved to the last
parameter of the TRACE command. To specify
STEP with no address parameters, enter three
commas (,,,) to denote the missing Al and A2
parameters.

The format of the trace display is shown in Table 8-2. All values are dis-
played in hex.

8-31

DEB Error Responses

31-Parameter required
35-Invalid start address
36-Invalid end address or Al > A2
44-Invalid trace mode parameter

8-32

Table 8-2. TRACE Display Format

LOC INST MNEMON XR U OPAD IADD IV EADD RO R1 R2 R3 R4 R5 R6 PU PL

where:

LOC 	gives the location of the last instruction executed.

INST 	gives the value of the instruction executed.

MNEMON 	gives the instruction mnemonic including the register or
condition code value, if required.

XR 	is the index register, if any, for the instruction.

U 	If U is a +, auto increment indexing is used for absolute
addressing instructions, OR, a forward address is
calculated for a relative addressing instruction.

If U is a -, auto decrement indexing is used for absolute
addressing instructions, OR, a backward address is
calculated for a relative addressing instruction.

OPAD 	gives the value or address of the operand.

IADD 	is the indirect address value.

IV 	is the index register value.

EADD 	gives the effective address that has been calculated for
this instruction.

RO 	gives the value of Register 0.

R1 	gives the value of Register 1 in Bank 0.

R2 	gives the value of Register 2 in Bank 0.

R3 	gives the value of Register 3 in Bank 0.

R4 	gives the value of Register 1 in Bank 1.

R5 	gives the value of Register 2 in Bank 1.

R6 	gives the value of Register 3 in Bank 1.

PU 	gives the value of the Program Status Word Upper.

PL 	gives the value of the Program Status Word Lower.

8-33

8.6 TWICE DEBUG CABLE

The TWICE debug cable is used to connect the slave CPU board to the user's
system. This will allow the TWIN's slave CPU to operate the user prototype
system.

The TWICE cable contains an in-line printed circuit assembly which provides

isolation for the TWIN system from the user system. The cable is approxi-
mately 10 feet long and has two connectors on one end (this end is attached to
the slave CPU board) and a 40-pin plug on the other end (which is inserted
into the user system). Refer to Section 3.1.5 for detailed installation
instructions.

The cable may remain installed even though not in use as long as care is taken

not to short out the 40-pin plug. A 1 amp fuse on the slave CPU board pro-
tects the +5V power to the TWICE cable.

The ICE command controls what signals are passed over the TWICE cable to the
user prototype system.

8-34

APPENDIX A

SDOS AND DEBUG COMMAND SUMMARY

The short form required to invoke the command is underlined.

Square brackets denote optional parameters. Braces denote available choices for required parameters.

{
program name

ABORT *

ASSIGNIchannel numbeq {file name [/disk drive]} [channel number{file name [/disk drive]fl...
device name 	 device name

ASM{sourcefilename} [listf ilename] [objectfilename] [WI DE] [N 0 ER R I

BKPT{address} [option]

CLBP [address]

CLOSEIchannel number} [channel number]

CMPF{ file name 1 [/disk drive]} {file name 2 [/disk drive]} [output file name [/disk drive]] [mode]

program name
QONT{*

COPY\
input device name 	 input device name
input file name [/disk drive]} [input file name [/disk drive]] .

CPROM [slave address] [PROM name] [start address] [end address]
[file name [/disk drive]

CSMS [address] device

[-output device name
DFILIfile name [/disk drive]} Loutput file name [/disk drive]) [start byte] [end byte]

DSTAT

DUMP{A1} [A2] [device]

DUP{disk drive 1} {disk drive 2} [diskette identifier]

EDIT [infilename] [outfilename]

output device name

output device name
..output{ 	name [/disk drive]}

[complement]

DEBUG [device]

DELETE {file name/disk drive} [file name/disk drive] ...

DEVICE {device name}{uD}

A-1

Page

4-21

4-26

6-2

8-24

8-25

4-27

4-40

4-20

4-37

7.6

4-60

8-5

4.39

4.24

4.43

8-29

8-17

4-32

5-2

Page

EXAM{ {address}
	

8-19

Fl LL{ start address}{ end address} hex-string 	 4-48

FORMATIdisk drive} [ident] 	 4-29

GO [address] 	 8-14

ICE{mode} 	 4-25

Kl LL{3IFIF} 	 4-65

[device name
Lol R [disk drive] [.] [I] Lfile name/disk drive] 	 4-34

LOAD Ifilename [/disk drive]} [parameter 1,...] 	 8-15

MO D ULE Ifile name [/disk drive]} {address 1} {address 2} {address 3} [module identifier] 	 4-58

MOVE {source-destination} (start source address} (end source address} (destination address} 	 4-47

CATCH laddress} Ihex-string} 	 8-21
f HINT 	 , 	 1 [device [begin line number} (end line number}1
"PRINTLfifile name [/disk drive] 	name [/disk drive] 	 end line number 	 4-38

PROM [M] [OP] [Al] [A2] [A3] [Nl] [C] 	 7-10

READ{
memory address
2650 read instruction type} [output option] 	 4-49

RENAM E {old file name/disk drive} /new file name}
or 	 4-35
RENAM E (disk drive} /diskette identifier}

RESET
[device

RH EX [/bias amount] [file name [/disk drive]]

RPROM [slave address] [PROM name] [start address] [end address] [complement]

SET
 {

Rm D1 [...Di]
PSU D1 [In]
PSL D

STATUS 	 8-22
program name

SUSPEND / {* 	 4-19

SXSTEM{drive number} 	 4-23

8-26

4-57

7-3

8-27

A-2

Page

OFF
TRACÉ ALL [Al A2] [STEP] 	 8-31

JMP [Al A2] [STEP]
ON

TYPE {OFF} 	 4-66

UPR [address] 	 4-54

VE R I FY {disk drive} 	 4.31

'device
WH EX laddress 1} {address 2}„ [address 1} address 2}] ...„ [address 3} file name [/disk drive]}] 	 4-56

WPROM [slave address] [PROM name] [start address] [end address] [complement] 	 7.4
memory address

WRITE {2650 write instruction type} [option] [hex-string] 	 4-51

file name 1/disk drive]
WSMS [address] [device 	 4-59

I
XE0.{ filename [/disk drive)} [parameter 1„..] 	 8-16

* (The Asterisk) [comment] 	 4-64

OPERATORS GUIDE 	 REV B
A— 3

0

0

APPENDIX B

TEXT EDITOR COMMAND SUMMARY

The short form required to invoke a command is underlined.

Parentheses denote optional parameters.

COMMAND

AGAIN 	 5-29

BEGIN 	 5-28

BRIEF 	 5-33

COPY n infile (outfile) 	 5-26

DOWN n 	 5-28

END 	 5-28

?‹ FILE 	 5-30

FIND $string$ 	 5-23

GET n (filename) 	 5-24

INPUT 	 5-17

INSERT string 	 5-17

KILL n 	 5-19

LIST N 	 5-26

MACROm=commandline 	 5-35

MACROm 	 5-35

N 	 5-28

PUT n (filename) 	 5-25

PUTK n (filename) 	 5-25

QUIT 	 5-31

REPLACE string 	 5-21

B-1

PAGE

COMMAND 	 PAGE

SDOS 	 5-33

SUBSTITUTE $stringl$string2$ 	 5-20

TAB character 	 5-31

TABS Cl C2 C3 • • 	 5-31

TYPE n 	 5-30

UP n 	 5-28

m <editor commands> 	 5-32

5-33

5-33

B-2

APPENDIX C

HEXADECIMAL OBJECT FORMAT

Absolute hexadecimal object code is formatted into blocks. Within a block,
only hexadecimal characters are permi,tted, with the exception of the colon
which indicates the start of a block.

Each block contains the following elements:

1. A start of block character. This is always a colon (:).

2. An address field. This is a four hex character field that indicates where
the data is to be stored.

3. A count field. This is a two hex-character field in the range 00 to 1E.
This indicates the number of actual data bytes in the block, which is half
the number of hex characters in the data field. A block length of zero
indicates an End-of-File (EOF) block. The address field of an EOF block
contains the start address of the loaded program.

4. A Block Check Character (BCC) for the address and count fields. This is a
two hex character field. The BCC is 8 bits formed from the actual bytes,
not the ASCII characters (e.g., if the count field was 1E, the two byte
ASCII value 31 45 would not be used, the value 1E would be used). The
bytes, in this case the two bytes from the address field and the byte from
the count field, are in turn exclusive ORed to the BCC byte and then the
BCC byte is rotated left one bit.

This field prevents storing data at an invalid memory address.

5. The data field. This field contains two times the number of characters
specified in the count field. Two bytes in this field are composed into
one byte of data to be stored into memory. For example, if the first two
characters on the tape were '1E', (ASCII Values 31 and 45) 1E is stored
into memory.

6. A Block Check Character for the data field. This character is formed in
the same way as the BCC for the address and count fields, only the data
used to compute the BCC is the data in the data field.

Each block is independent. For example, paper tape can be positioned
prior to any block and a load started. The loading of absolute object
code will be halted by:

a) A Block Control Character error on the address and count fields,
b) A Block Control Character error on the data field,
c) An incorrect block length,
d) A non-hex character within the block.

C-1

Interblock characters must be non-printing ASCII control characters. For
example, a CR (Carriage Return)/LF (Line Feed) combination is used within
the inter-block gap to reset the TTY or terminal after each block.

105000A3C04556024FFF01F015040030

2 3 4 5
	

6 	7

2 - Start block character (colon)
3 - Starting address for block (H'0500')
4 - Number of bytes in block (H'OA'=10)
5 - BCC bytes for fields 3 and 4 (W3C")
6 - Data, two characters per byte
7 - BCC byte for field 6 (H'30')

C-2

APPENDIX D

SMS TAPE FORMAT

An SMS tape consists of a block of data, preceded by a TAPE ON character
(CTRL-R or 12H) and followed by a TAPE 0FF character (CTRL-T or 14H).
When the TAPE ON character is read, the address counter is set to zero. This
means that the next data byte will be stored at location 0. When the TAPE 0FF
character is read, the tape has been read and no more data is stored.

The data in between is represented as follows:

1. Each data word is represented by one or two hexadecimal characters

2. Each data word is followed by an apostrophe (27H). When the apostrophe
is read, the data word composed from the previous hexadecimal characters
is stored at the location pointed to by the address counter. The address
counter is then incremented.

All characters are punched in the standard 8-channel ASCII teletype code.
Parity is not checked.

EXAMPLE OF SMS FORMAT

01'FA'FA'00'01'

1 2 3 	4

1 The tape on character. Resets location counter to 0.
2 An individual data byte, 01'. 01 is the data to store,

' indicates end of the data byte.
3 The complete data field for this tape.
4 The tape off character. Indicates end of data.

D-1

0

0

0

Cl

0

0

APPENDIX E

SYSTEM READINESS TEST

FLPT1
READY [/disk drive] LCONO]

PURPOSE

READY is a command file which provides a quick check of the TWIN system in the
SDOS environment.

EXPLANATION

CAUTION

PROM power switch must be on prior to ex-
ecuting this command.

READY is a command file which provides a quick check of the TWIN system in the
SDOS environment by exercising each device and the majority of system commands.

DISK DRIVE identifies the disk drive of the diskette containing READY. This
diskette must be writable (TAB in place over slot) and have space for one file
which will be written and then deleted. The printed output must be directed
either to CONO (basic system) or to LPT1 (super system). Each command execut-
ed is displayed on the console. At the end of its execution, READY invokes
the Editor, which prints:

EDITOR VERSION n.n
*

where:

n.n is the current version of the Editor.

At this point enter the string: QUIT. The 'End of Ready Test' message noti-

fies the user that the test has completed.

Error Responses

Two types of error messages may occur:

1. Memory type errors in the form:

ERROR ADDRESS XXXX
DATA WAS = XX
DATA S/B = XX

2. Standard SDOS error message.

E-1

* [READY] TEST FOR SDOS 3. 8

* TO ENECUTE TYPE

* RERDY $1 $2
* $i - DRIVE MJPEER OF DISK WITH READY FILE
-$ 	f2 LIST OUTPUT DEVICE
*

TYPE ON
-*-
* TURN PRCM POTER ON

• MEMORY TEST

TYPE OFF
RFR2M 8 82S115 0 1FF
CPROM 8 825115 8 1FF
RPRCM 8 1782 e FF
CPROM 8 1782 8 FF

DEBUG
ABORT DEBUG

RHEx REFIDY/$1
GO 08
UPR
TYPE ON

COPY READY/$1 ***KIP/$1
PRINT ***HELP/$1 $2
DEL ***ELP/$1
LDIR I $1 $2

DEBUG
BKPT 0 W

BKPT 1888 R
DSTRT
CLBP 8

DSTRT
CLBP 1888
DSTRT

MRT DEBUG

ICE 2
[CE 1
ICE OFF

* TYPE 'GUIT' WHEN EDIT ASK FOR INPUT
1241

* • _TURN DROM KIER OFF

* END OF READY TEST

MORT*

Figure E-1. System Readiness Test

E-2

0080838611807018
0840033788538941308680368~1882910808001381471901032188800035833
885B1E51434F4E4RD82~3815032010(630131.3131.6DD4F775FFB4FT CO318440
00791ED92ECC8188C2CE0187C£61.8780818700187989380319DE48098848618906777

: 01397064U81.87525252e£618BCC0156E618CCC8157D4F68031.848481E44349882%
18841EEED4F3CC818443C6188X81880681 (359FCEC35CDE185850159798601EE 0187%
8802:1D71986F859F06810ERNICE1850:018FIBC818138513159738681EE0187986969
813EFiC871FOOFIBC144F8585858588438E4311/11828487450F8538133R1685071793
01861C1CCDB189788F20)317601CD0177803186031.893R3eF2CC816ROX1161385
91271011103185780F2CM168CD0169,3C81813FINF2CCB17DCD017ED4F5D4f 4D7

• et143233€00189174045404F52592953495R4528495320282048€04552524FR8
BMIE 4D522041444452455353285958585880444151412857 41533D585820532F 42f 6

:817C 	 08808800008028382834283831323136323862
91978846323432383312980361
0678913C100

Figure E-1. System Readiness Test (Continued)

E-3

0

0

0

0

APPENDIX F

TWIN SUPERVISOR CALLS

NOTE

The information in this Appendix supersedes
Appendix B of the TWIN System Reference
Manual.

Supervisor calls are used by the slave CPU to gain access to SDOS resident
service such as input and output from system peripherals or getting parameters
from a program command line.

Supervisor Call Description

The master CPU has as one of its functions the monitoring of the slave CPU.
Included in the monitoring function is providing I/O from system peripherals
to the slave CPU. Because the slave CPU does not have direct access to system
peripherals or operating system functions, the master CPU services such I/O or
monitor requests.

The slave CPU obtains service from the master CPU by issuing a supervisor
call, SVC. The supervisor call is implemented as an output instruction
sequence in the user program. This output instruction is through a specific
device address, which is linked by a pointer to a buffer area containing ser-
vice request parameters. This buffer area is called the service request
block, SRB. The Pointers to SRBs must be at specific memory locations in
slave memory. Table F-1 shows the one-to-one correspondence between device
addresses and SRB pointers. A total of six SVCs may be defined at any one
time.

Table F-1. SVC References

	

Device
	

SRB
SVC
	

Address
	

Pointer Location

1
	

F7
	

40
2
	

F6
	

42
3
	

F5
	

44
4
	

F4
	

46
5
	

F3
	

48
6
	

F2
	

4A

The sequence of events for issuing an SVC is:

1. 	Define an SRB pointer in the location corresponding to the SVC and
device address through which you want to issue the SVC.

F-1

2. Define the SRB parameters according to the SVC function you are going
to request.

3. Do a:
WRTE,r 	Device Address

instruction, where Device Address corresponds to your SRB pointer
location as defined in Table F-l. In this instruction, r is a "don't
care" value. The act of writing to the appropriate device address,
rather than the data written, to it is what actually issues the SVC.

Service Request Block (SRB)

The SRB contains the parameters that are needed to perform the function re-
quested by an SVC. Each SRB contains eight bytes of data. The following
table indicates the SRB contents in the order they must appear in your program.

Table F-2. Contents of the Service Request Block

Byte Name
	

Byte
	

Contents

SFC
	

1
	

SVC function code
SCH
	

2
	

Channel number
STAT
	

3
	

SRB status
SDAT
	

4
	

Single byte data
BC NT
	

5
	

I/O byte count
BMAX
	

6
	

I/O buffer length
BPTR
	

7-8
	

I/O buffer pointer

Description of SRB Bytes

This subsection contains a description of each byte in the service request
block.

SVC FUNCTION CODE - Byte 1. The SVC function code specifies the I/O or moni-
tor function to be performed. The functions are described in the subsection
titled "SVC Function Codes", and listed in Table F-3 in that section.

CHANNEL NUMBER - Byte 2. A logical channel number must be assigned for each
SVC function code that requests I/O service. The channel number must be in
the range 0 to 7. When a channel is assigned to a physical device or file,
the channel stays connected to that device or file until a CLOSE command is
issued on the channel or the job is aborted.

The console devices CONO and CONI, as well as the flexible disk, are sharable
devices which can be assigned to more than one channel. The other devices are
non-sharable and can be assigned to only one channel at a time. A user pro-
gram can have a maximum of seven channels assigned to files.

F-2

SRB STATUS - Byte 3. The operating system stores an SRB status code in this
byte. When a "Read and Proceed" or a "Write and Proceed" SVC function is
requested, the operating system will write 7F (I/O in progress) in this byte.
When the I/O operation is completed, one of the other SRB status codes will be
stored in this byte. Appendix G lists the SRB status codes in hexadecimal,
and a short description of each.

SINGLE BYTE DATA - Byte 4. This byte is used by the operating system to
return single byte data requested by a non-I/O SVC function. For an I/O SVC
function, the physical status of the device being accessed is stored in this
byte.

I/O BYTE COUNT - Byte 5. The actual number of bytes of data input or output
is stored in this byte. For line oriented ASCII I/O operations, the count is
the actual number of characters plus the carriage return. For binary I/O the
count is the actual number of bytes. Byte 5, I/O Byte Count, is also used
with Byte 4, Single Byte Data, to return double byte data requested by a non-
I/0 SVC function.

I/O BUFFER LENGTH - Byte 6. In this SRB byte, you specify the maximum number
of bytes for I/O that you expect, for both ASCII and binary I/O.

I/O BUFFER POINTER - Bytes 7 and 8. These bytes point to the address of the
I/O buffer. The location of this buffer must be in the first 16K page of pro-
gram memory. This buffer is used to transfer data to or from your program.

F- 3

Code
	

Function

10
	

Assign channel to device or channel

01
	

Read ASCII and wait
81
	

Read ASCII and proceed
02
	

Write ASCII and wait
82
	

Write ASCII and proceed

41
	

Read binary and wait
Cl
	

Read binary and proceed
42
	

Write binary and wait
C2
	

Write binary and wait

03
	

Close device or file on channel
04
	

Rewind file on channel
05
	

Delete file on channel
06
	

Rename file on channel
11
	

Get time (milliseconds)
12
	

Get overlay addresses
13
	

Get parameter (procedure parameter buffer)
1C
	

Get parameter (emulation parameter buffer)
15
	

Get device status
16
	

Get device type
17
	

Load overlay
18
	

Execute overlay
19
	

Suspend execution
1D
	

Get top of slave memory
lA
	

Exit
1F
	

Abort

Table F-3. SVC Function Codes (Hexadecimal)

F- 4

SVC Function Codes

Following are descrtptions of the SVC functions available to user programs.
You enter the SVC function code in byte 1 of the SRB prior to issuing an SVC.
Note that the SVC function codes are hexadecimal values.

ASSIGN CHANNEL - Code 10

A user program may perform I/O through up to eight logical channels, numbered
0-7. Any logical channel can be assigned to any physical device attached to
the system. 	If you assign a channel to a floppy disk file which does not
exist, the file will be created and a "new file" status is returned to your
SRB.

Devices must be assigned to channels prior to performing I/O, and the assign
is in effect until a CLOSE or ABORT is performed.

Set up the SRB as follows:

SFC 	10
SCH 	- number (0-7) of the concerned channel
BPTR

	

	pointer to first byte of device or file
name. The device or file name is an ASCII
string terminated by a carriage return

(ODH)•

Data returned are:

STAT - status of the assign
SDAT - device physical status

READ/WRITE ASCII - Codes 01, 81, 02, 82

A line is defined as a string of ASCII characters termined by an end of line
(EOL) character, which is the normal ASCII carriage return (00H).

For ASCII READ/WRITE AND PROCEED, codes 81 and 82, the master CPU initiates
the requested I/O and returns control to the user program immediately; it does
not wait for completion of the I/O operation. The SRB status, STAT, is set to
7FH to indicate "I/O in Progress". Your program must make specific tests on
STAT for a change status to indicate completion of I/O.

For ASCII READ/WRITE AND WAIT, codes 01 and 02, the Master CPU initiates the
I/O and then waits for it to complete before returning control to your program.

All READ and WRITE operations are performed over a logical channel which has
been defined with either the ASSIGN SVC or the SDOS ASSIGN command.

SRB setup:

SFC 	- 01 For READ ASCII and WAIT
- 81 for READ ASCII and PROCEED
- 02 for WRITE ASCII and WAIT
- 82 for WRITE ASCII and PROCEED

F- 5

SCH 	Number of the previously assigned channel

BMAX . 	Maximum number of data bytes to read or
write. BMAX must be in the range

1 	BMAX -.5- 255

BPTR 	Address of the input or output buffer area

The actual number of data bytes transferred may be less than or equal to BMAX.

If the data stream does not contain a carriage return (CR) character at char-
acter BMAX + 1, then BMAX number of characters are transferred and a CR is
appended to the end of data stream. For this reason the buffer area to which
BPTR points must be of size BMAX + 1 for read operations. The next I/O opera-
tion begins with character BMAX + 2. Note that the BMAX + lst character is
not reprocessed.

Data returned are:

STAT - termination status
SDAT - device status
BCNT - 	actual number of bytes moved into the input

buffer area or out of the output buffer area.

READ/WRITE BINARY - Codes 41, Cl, 42, C2

A block of binary data bytes can be input or output through a channel which
has been previously assigned with either the ASSIGN SVC or the SDOS ASSIGN
command. The binary data transfer is terminated when a specified number of
bytes has been transferred; the carriage return character has no special mean-
ing in binary I/O operations.

BINARY READ/WRITE AND PROCEED, codes Cl and C2, is handled by the master CPU
as explained above for ASCII I/O AND PROCEED operations.

BINARY READ/WRITE AND WAIT, codes 41 and 42, is handled by the master CPU as
explained for ASCII I/O AND WAIT operations.

SRB setup:

SFC 	41 for READ BINARY AND WAIT
- Cl for READ BINARY AND PROCEED
- 42 for WRITE BINARY AND WAIT

C2 for WRITE BINARY AND PROCEED

SCH 	number of the previously assigned channel

BMAX 	number of binary data bytes to transfer;
BMAX must be in the range

0 5_ BMAX :5- 256

If 0 is specified, 256 bytes are transfered.

F-6

BPTR - address of the input or output buffer area

The actual number of data bytes transferred may be lens than or equal to BMAX.

Data returned are:

STAT - termination status

SDAT 	device status
BCNT - actual number of bytes transferred

CLOSE - Code 03

The close function disconnects the given channel from the device or file to
which it was assigned. When the channel is assigned to a file on a flexible
disk the last buffer of data stored in the system memory buffer is output to

the file and the disk directory is updated to indicate the length of the file.

SRB setup:

SFC - 03
SCH 	- number of channel to close

Data returned are:

STAT - termination status

SDAT - device status

REWIND - Code 04

Rewind applies only to floppy disk files. 	It has the effect of positioning
the file pointer to the beginning of the file. If a device other than a
floppy disk is assigned to the specified channel the rewind is treated as a
NOP.

When the file is rewound, it is treated as if it had just been assigned. If
the first operation for the rewound file is read, the data is input from the
file in the normal manner. 	If the first operation from the rewound file is a
write, the file is treated as if it were a new file.

SRB setup:

SFC 	04

SCH 	- channel assigned to disk file to be rewound

Data returned is:

STAT - termination status

F-7

DELETE - Code 05

The delete functión causes the file assigned to the Biven channel to be
deleted from the directory of the diskette, and the channel is disconnected
from the file. If a device is assigned to the channel, the delete function
will be treated the same as the CLOSE function.

SRB setup:

SFC 	05
SCH 	channel assigned to disk file to be deleted

Data returned is:

STAT - termination status

RENAME - Code 06

RENAME applies only to floppy disk files. The file being renamed must have
first been assigned or rewound; that is, it must not be in an I/O process. If
a device other than a floppy disk is assigned to the channel, the function is
treated as a NOP.

SRB setup:

SFC - 06
SCH 	- channel assigned to the disk file to be renamed
BPTR - 	pointer to the first byte of the new file

name. The new file name is an ASCII string
terminated by an EOL.

Data returned is:

STAT - termination status

GET PARAMETER - Codes 13, 1C

Parameters in the command line invoking a user program (LOAD or XEQ SDOS com-
mands) are stored in a master memory in either the system parameter buffer or
the procedure buffer and are accessible to the user program via an SVC. Since
the user program can be invoked directly from the system console or from with-
in a procedure file, an SVC is provided for each case.

Parameters are delimited in the command line by a space, comma, or EOL. A
parameter can be omitted from an ordered sequence of parameters in the command
line by entering two consecutive commas („). An EOL terminates the command
line.

Each parameter is stored in the system parameter buffer as an ASCII string
terminated with an EOL. Omitted parameters are stored as a single EOL. The
parameter is identified by a number corresponding to its position in the com-
mand line; the GET request is keyed on this number.

F-8

The GET PARAMETER function transfers the ASCII string and EOL corresponding to
the number of the.parameter requested from the system parameter buffer to a
specified buffer area in the user program. When a parameter number greater
than the number of parameters in the command line is requested, a -1 is put in
the first byte of your buffer.

SRB setup:

SFC 	13 for GET PARAMETER from PROCEDURE command
1C for GET PARAMETER from system level command line

SDAT -

BMAX -

BPTR -

Data returned is:

number of parameter to get. If the high bit
is set, all remaining parameters will be
fetched. SDAT is incremented by the SVC
processor so that it need only be set for
the first call when sever- al successive
parameters are being fetched.

maximum expected length of parameter(s)
ASCII string

pointer to buffer area to which parameter(s)
is to be transferred

STAT - termination status. A short read status, code 06,
is returned when the number requested is greater
than the number of parameters in the command line.

LOAD OVERLAY - Code 17

User program overlays stored on a diskette may be loaded by the user program
executing under the slave CPU. Each overlay must be stored on the disk as a
binary load module, created either with the SDOS MODULE command or by the
TWIN-Resident Relocatable Assembler, RASM (see 2650 Relocatable Assembler
Manual).

Execution of the loaded overlay is not started and control remains with the
requesting user program.

SRB setup:

SFC - 17
BPTR - pointer to buffer containing the name of the over-

lay to load. The overlay name is an ASCII string
terminated with an EOL.

Data returned is:

STAT - status of the load

F-9

EXECUTE OVERLAY - Code 18

This function is Galled and performed in the same way as the LOAD OVERLAY
function except that execution of the overlay is started after being loaded.
The EXECUTE OVERLAY function also provides the capability of chaining separate
programs.

SRB setup:

SFC 	18
BPTR - pointer to buffer containing the name of the over-

lay to load and execute. The overlay name is an
ASCII string terminated with an EOL.

Data returned is:

STAT - status of the load and execute. If no error
occured during the load, the overlay is executed.

SUSPEND EXECUTION - Code 19

The SUSPEND EXECUTION causes suspension of the requesting program at the place
where the SVC was issued. The action is similar to an I/O and WAIT opera-
tion. The program can be restarted by entering the SDOS command "CONT /".
Execution resumes at the next location after the SUSPEND EXECUTION SVC.

SRB setup:

SFC - 19

No data is returned.

GET OVERLAY ADDRESS - Code 12

This SVC gets the memory bounds of the last overlay loaded into slave memory.
Address data is returned to a buffer in the user program.

SRB setup:

SFC - 12
BPTR - pointer to 6-byte data buffer for data returned by

the SVC processor.

Data returned are:

STAT - status

The data buffer contains 6 bytes of data as follows:

Bytes 0, 1 - overlay begin address
Bytes 2, 3 - overlay end address
Bytes 4, 5 - overlay execution address

F-10

EXIT - Code 1A

EXIT terminates user program execution and gives control to the TWIN operating
system. Assigned channels are not closed.

SRB setup:

SFC - 1A

ABORT - Code 1F

ABORT terminates user program execution and gives control to the TWIN operat-
ing system. All assigned channels are closed.

SRB setup:

SFC - 1F

GET DEVICE TYPE - Code 14

This SVC request returns to the SRB device type code and device system identi-
fication number of the device attached to the specified channel. Tables F-4
and F-5 show Device Identification and Device Type codes respectively.

F-11

Table F-4. Device Identification and Type

I.D. 	Type
Name 	 Description

	
Number
	

Code

CONI
	

Console input
	1
	

1
CONO
	

Console output
	

2
	

2
LPT1
	

Line printer
	

3
	

2
DISK FILE
	

File 	-1
	

43
TTYR
	

TTY P/T reader
	

5
	

1

H SPT
	

High speed P/T reader
	

6
	

1
R232
	

RS-232 port
	

6
	

43
LPT2
	

Optional line printer
	

6
	

2

Table F-5. Device Type Code

Type
Code
	

Description

1
	

ASCII Read only
2
	

ASCII Write only
3
	

ASCII Read/Write
41
	

Binary Read only
42
	

Binary Write only
43
	

Binary Read/Write

F-12

The device type specifies the type of I/O performed on the device under normai
usage. A user program can read from input device in either ASCII or binary
mode and can write to any output device in either ASCII or binary mode.

CONI, CONO, and the floppy disk are sharable devices which can be assigned to
multiple channels simultaneously. The remaining devices can be assigned to
only one channel at a time. A maximum of seven channels can be assigned to
floppy disk files.

SRB setup:

SFC - 14
SCH - channel assigned to the device whose type is re-

quested

Data returned are:

STAT - status of the SVC request
SDAT - device number
BCNT - device type

GET DEVICE STATUS - Code 15

The physical status of the device attached to the specified channel is return-
ed to the SRB. The physical status returned is that associated with the last
operation performed by the device.

SRB setup:

SFC - 15
SCH

	

	- channel assigned to the device whose status is to
be returned

Data returned are:

STAT - status of the SVC request
SDAT - device physical status. A zero is returned if no

physical status is available

GET LAST CONSOLE INPUT CHARACTER - Code 16

This function returns the last character entered at the system console to the
SRB data byte. If this SVC is issued within a loop while performing extensive
calculations or I/O, it provides the user program with a way to respond to
operator action at the system console.

SRB setup:

SFC - 16

F-13

Data returned are:

STAT - status of the SVC request
SDAT - last console character input

GET TOP OF SLAVE MEMORY - Code 1D

The top of slave memory as determined at boot time is returned to the data
bytes of the SRB.

SRB setup:

SFC - 1D

Data returned are:

STAT - status of SVC request
SDAT - top of memory address, high byte
BCNT - top of memory address, low byte

GET TIME - Code 11

The TWIN has a real time clock which records time since system start-up in
milliseconds. Currently, the system clock is always off, so that a value of
zero is always returned. The SVC has been provided for future system enhance-
ment and expansion.

SRB setup:

SFC - 11

Data returned are:

STAT - status of the SVC request
SDAT - high byte of system time
BCNT - low byte of system time

F-14

APPENDIX G

SRB STATUS CODES

CODE
	

MEANING

00
	

Function complete/no error
01
	

Channel assigned to new file
02
	

Illegal channel number
03
	

Channel not assigned
04
	

Channel busy
05
	

Illegal function code
06
	

No EOL on ASCII read
07
	

No EOL on ASCII write
08
	

Illegal drive number
09
	

File in use
OA
	

Device not operational
OB
	

Device not available
OC
	

Device not ready
OD
	

Device in use
OE
	

Directory read error
OF
	

Directory write error
10
	

Directory full
11
	

Device read error
12
	

Device write error
13
	

Invalid address, attempt to clobber utility
programs or memory wraparound

14
	

Unused
15
	

File name in use
16
	

Illegal file name
17
	

File in read/write progress
18
	

Channel already assigned
19
	

Incorrect diskette
7F
	

I/O in progress
FF
	

End of file or end of device

These status codes are returned to system slave jobs and displayed on the sys-

tem console or to user slave programs when I/O errors occur in byte 3 of the

SRB.

G-1

0

0

0

0

0
0

APPENDIX H

ADDING A DEVICE DRIVER TO SDOS

The following technique for adding a driver to SDOS assumes the reader is
familiar with the two separate handlér and interrupt service portions of a
driver and serves to show how to incorporate them (merge them into) the SDOS
load module. The user must configure his driver such that it occupies the
memory locations reserved for an optional device driver.

The discussion below describes how to add the High Speed Paper Tape Reader
driver (device Name HSPT) to SDOS. A copy of the source listing used is at
the end of this description.

The merging scheme is very simple. The user will assemble his logic as a
separate object module (in Hexadecimal Format), and then perform the following
steps using SDOS functions to generate a new SDOS module.

1. LOAD SOOS/0

Load the SDOS Load module into common memory.

2. RHEX FILENAME (of the object module)

Merge the new driver logic into common memory with SDOS.

3. MODULE SDOS/1 80 3FFF 100 (comment)

Make a new SDOS module on a different diskette (advisable until the
new driver is dehugged).

Follow the sequence of steps below to actually merge the driver logic and its
related device tables into SDOS. The HSPT listing shows clearly what is need-
ed in the way of linkages and tables for the driver; briefly the needs are
these:

1. Linkages to SDOS routines SAVR, RESR, I0C3, SDCB, and DISP
(DISPATCHER). The user should be familiar with the functions of these
routines (briefly annotated on the listing); the linkage addresses are
shown.

2. FCB (File Control Block) linkage address to the first of the 22 SDOS
FCB's. There is no "dedicated" FCB for a particular handler, but the
driver is provided with an "Active FCB Index" in the driver-dedicated
DCB described below (entry DFCB) when I/O is initiated. Upon entry to
the "Handier" the Active FCB Index is in register Ri.

3. Shown next in the listing is the creation of linkages to the new
driver's DCB (Device Control Block). Note that no data need be merged
into the DCB, but linkages must be provided.

H-1

4. Now that a device index has been chosen, the corresponding Device
Definition Table (DDT) can be set up to define the new device, by
name and characteristics, in the SDOS data base. The user must use
the DDT entry point linkage addresses shown in the listing (DHAN,
DTST, etc.) and use the new device index for an offset in the "ORG's"
in place of the PTDV index (HSPT).

The data which must be provided in the entries for this table should
reflect the new device as shown in the listing. Note that the DHAN
entry is an "unconditional absolute branch" to the device "handler"
portion of the new driver.

5. Add the transfer vector for the "interrupt service" portion of the
driver. An appropriate slot must be chosen among those in the avail-
able hardware interrupt locations which start at location 1000EH.
See the TWIN I/O USER GUIDE.

6. Now all that is left is to add the driver logic itself to SDOS. The
origin chosen must be within the available master memory as shown
(3E80H).

H-2

1 	TITL 	RSPT VER 3.8 APRIL 1978
2*
3*

5*
6*
7*
8 * 	 * HIGH SPEED PAPER TAPE *
9 * 	 * 	REW,ER DRIYER 	*
10 * 	 * 	 * ,
11 *
12 * 	 ******************~~14*
13 *
14 *
15 *
16 *
17 *
18 * REGISTER EQURTES
19
28 P8 	EQU 	8 	REGISTER 0
21 R1 	EQU 	1 	REGISTER 1
22 P2 	EQU 	2 	REGISTER 2
22 R3 	EQU 	3 	PIGISTER 3
24 *
25 * CONDITION CODES
26 *
27 P 	EQU 	1 	POSITIVE RESULT
28 	EQU 	8 	ERORERILT
29 N 	EO! 	2 	NEGATIVE RESULT
38 LT 	EQU 	2 	LESS THAN
31 EQ 	EQU 	8 	EQUAL TO
32 GT 	EQU 	1 	GPIRTER TROM
3: UN 	EQU 	3 	114COWITIONAL
34 *
35 * PSN LOZER EQURTES
36 *
37 CCI 	EQU 	 H'80"
28 CC8 	EQU 	H'40-
19 P5 	EQU 	H'18'
40 WO 	EQU
41 OYF 	EQ0
42 COM 	EQU 	H'02'
43 C 	EQU 	H'01'
44*
45 * PSN UPPER EQUfiTES
46 *
4(Stté, —EDO 	wt413'
48 PLAG EQU 	H'40'
49 II 	EQU 	H'28'
58 92 EQU
51 SP1 	EQU 	H'82'
52 SPO 	EQU 	H131"
53 le
54 * HIGH SPEED PAPER TAPE READER INPUT AND CONTROL PORTS
Sri *
56 POPT LOU 	-----W150 -----NSFT—CONTROL PORT
57 PDPT EQU 	H'D1' 	HSPT DATA PORT
58 BSPT EQU 	H'EE' 	COLANON MEMORY BANK SELECT

60 *

Figure H-1. Adding a Driver to SDOS Sample

H - 3

61 *
62 *
63 *
64 **************************
65 *
66 * GEFERAL CONTROL CHARRCTERS *
67 *
68 	
69 *
70 EOL 	ECOJ
71 CR 	EQU
72 LF 	EQU
73 CTLZ EQU
74 RLE 	EAU
75 ESC 	EQU
76 SF% EQU

-IN -OF LINE
WED' 	CARRIAGE RETURN
H'OA" 	LINE FEED
WiFI' 	-CONTROL Z
H'7F' 	RUEOUT
H'18 	ESCAPE
H'20' 	SPACE

If

45 1

77 SL5H EQU
78 NULL EQU 	8 	NUL
79 700N EQU 	H'11"g0N- FOR TTY READER
88 XOF 	EQU 	H'13; 	XOFF FOR TTY READER
81 *
82 * JCB STATE
82 *
84 JS9 	EQU 	0 	Joe Jeu (No JOB)
85 J51 	EQU 	1 	JOB LOODED
86 J52 	EQU 	2 	JOB READY TO START
87 J53 	EQU 	3 	JOB EXECUTING

	

88 J54 	EQU 	4 	JOB IN I/O WAIT

	

89 JS5 	EQU 	5 	JOB I/O COMPLETE

	

90 J56 	EQU 	6 	 J08 SUSPENGE.

	

91 JS7 	EQU 	 JOB -BEING ABORTED

	

92 J58 	EQU 	8 	JOE SELF PAUSED
93 *
94 * DCE SIAIES
95 *

	

96 DRDY EQU 	0 	DEVICE READY

	

-97-1385Y IVO 	 DEVi1 	 EUSY

	

98 DVDN EQU 	2 	DEVICE DOWN
99 *
108 * DSB SIHTLS
101 *

	

102 DSBU EQU 	0 	DRIVE STATE LtikSOWN

	

102 D5P5 	 - DRIVE DSE SET

	

184 DSBD EQU 	2 	DRIVE DOW
185 *
106 * FCB STFITES
187 *

	

11.: FREE EQU 	0 	FREE

	

189 FASS EQU 	1 	ASSIGNED

	

110 FCFN EQU 	2 	OPEN

	

111 FISSY EQU 	3 	BUSY
112 FRDY EQU 	4 	READY
113 FEOF EQU 	5 	EOF/EOD
114 FEOD EQU 	FEOF
115 RMT EQU 	6 	FIBORT
116 *
117 *

S, 	118 *
119 *

54
	

1229*
55f

Figure H-1. Adding a Driver to SDOS Sample (Continued)

H - 4

121 *
122 *
123 *
124 ********~~~105
125 *

126 * SRB STATUS. CODES *
127 *

3 	128**m******m**********
129 *
130 SEee ECU 	8 	,FUNCTION COMPLETE / NO ERROR
131 SE01 ECU 	1 	NEW FILE
132 5E82 EQU 	2 	ILLE91 CHAWIEL WIMPER
133 SE83 EQU 	3 	CHFHEL NOT ASSIGNED
134 5Ee4 EQU 	4 	CAMEL BUSV
135 5E05 EQU 	5 	—ILLIGAL FUNCI ION CODE
136 5E06 EQU 	6 	SHORT READ
137 SEe7 EQU 	7 	SHORT WRITE

---L1B 5E08 -EQU 	8 	ILLEGALDRIVE AMBER
139 5E09 EQU 	9 	FILE IN USE
140 SEIN ECU 	18 	DEVICE NOT OPERRTIONAL
141 5E11 EQIJ 	11 	DEVICE NOT AVAILABLE
142 SE12 EQU 	12 	DEVICE NOT READY
143 5E17 ECU 	13 	DEVICE IN USE
144 SE14 Hij 	14 	DIRECTORV READ ERROR
145 5E15 EQIJ 	15 	DIRECTORV WRITE ERROR
146 5E16 EO 	16 	DIRECTORV FULL
147 SE17 EQU 	17 	DEVICE READ ERROR
148 SE18 ECU 	19 	DEVICE WRITE ERROR
149 SE1? EQU 	-1 	NOT RSSIGNED
150 5E20 EQU 	-1 	NOT ASSIGNED
151 SE21 EQU 	21 	FILE HAK IN USE

	 152 SE22 EQU 	22 	'LEGAL FILE NAME
153 SE2: ECU 	2 	FILE IN Rild PROGRESS
154 5E24 ECU 	24 	CHANNEL ALREADY ASSIGNED
155 5E25 ECU 	25 	INCORRECT DISKETTE
156 SE7F ECU 	H'7F' 	I/O IN PROCIRESS
157 SEFF EQU 	H'FF' 	END OF FILE ENDCF DEVICE

__15,8 *
159 **************** *** ****
168 *

	 161 * SYC FUNCTION OP CODES *
162 *
163 ***********************W ij**

164 *
165 ROOF EQU 	Wel' 	READ
166 WTOP EQU 	H'82' 	WRITE
167 CLOF EQU 	H'el' 	CLOSE
168 RWOP EQU 	H'84' 	RUI%
169 DOP EDO 	H'05' 	DELETE
178 MOP EQU 	H'86' 	RENFrE

4,
	 171 DIOF ECU 	H'87' 	DIRECT 170

172 %CP ECU 	 ASSIGN
45
	

173 RROP EQU 	H'61' 	READ BLOCK
174 WBCP EQU 	H'62' 	WRITE BLOCK
175 *
176 *
177 *
178 *
179 *

55
	

188 *
sl

Figure H-1. Adding a Driver to SDOS Sample (Continued)

H — 5

181 *
182 *
183 *
184 ***u*********************n*********
185 *
186 * DEVICE CONTROL 8LCCK INDICES
187 *

189 *
198 CIDV EAU 	8 	CONSOLE INPUT
191 CODV EAU 	1 	CONSOLE OUTPUT
192 LADY EGO 	2 	UW PRINTER
193 KO« EAU 	3 	AVAILABLE
194 ERV/ EAU 	4 	ERROR PSUEDO DEVICE
19511VR IUU 	-5 	TPCREFDER
196 RSDY EAU 	6 	RS-222
197 LPT2 EAU 	6 	SECAt4D LINE PRINTER
198-PTDV EAU 	0 	 -PAPER TAPE READER
199 USR1 EAU 	7 	USER 1 'NOU
288 USR2 EAU 	8 	USER 2 INDEX
ati-USE --EGO 	-8 	1.1SEP2 IADE
282 USP4 EAU 	18 	USER 4 INDEX
283 USR5 EGO 	/1 	USER 5 INDEX
284 USR6 EAU 	12 	USER 6 INDEX
205 USR7 EAU 	13 	USER 7 INDEX
286 USR0 EGO 	14 	USSR 8 INDEX
287 FDP EQU 	15 	FLOPPY DISK
288 *
289 , 	(NOTE USER INDICIES ARE 7-14)
210 *
211/411**~******W*****~***44~~4
212 *
213 * LINKS TO SOOS ROUTINES AND DATA BASE *
214 *
2i5 **
216 *
217 * SDOS ROUTINES *
218 *
219 *********************
228 *
221 58W EQU
222 RESP. EAU
222 10C2 EAU
224 SDCB EAU
225 015P EAU
226 *
227 tIg**4.***~~~~4~***
228 *
229 * FC8 ENTRIES (1ST FC8) *

*

H'2882' SAVE REGISTERS
H'2886 	RESTORE REGISTERS
Hl 	/Ar' SET CHANNEL I/O COMPLETE
H'136fi' SET-UP DC8 FROM THE FC8
H'28OF DISPATCHER

ss

23i ***4*************************
232 *
2ZZ Frs 	F00 	H'2158' FC8 STATE

	

234 FJCB EAU 	FCS+22 	JC8 INDEX

	

235 FR& EAU 	FJC8+22 BANK

	

FCM F011 	 NUMBER

	

237 FCOD EAU 	FCH+22 	SVC FUNCTION CODE

	

238 FADS EGO 	FC0D+22 FNVSICHL DEVICE STATUS

	

2/9 Fsn FOU 	FRDS+22 I/O COMPLETE STATUS

	

248 FCNT EGO 	FSTA+22 I/O BUFFER BYTE COIJU
5

Figure H-1. Adding a Driver to SDOS Sample (Continued)

H - 6

241 *
242 *
242 *
244 *
245 4:

246 **********~*********~*
247 *
248 * DEFIK THE 1.19T DCB *
249 *
258 *************************** ,
25t *
252 DCS 	EQU 	14'2346' 1ST DCB ADDRESS (DEVICE INDEX 8)
253 PTCS EQU 	DCS+PTDV DEVICE STATE FOR HSPT
254 PTTA EOU 	PTCS+i6 DEVICE STATUS
255 PTDX EDU 	PTTR+16 I/O BUFFER INDEX
256 PTNT EOU 	PTDX+16 I/O BUFFER COUNT
257 PTCO ED! 	PTNT+16. I/O BUFFER ECHO COUNT
258 PTCB EQU 	PTC0+16 ACTIVE FCB INDEX
259 PTOD EQU 	PTCB+16 SVC FUNCTION CODE
26~ 111 	PTOD+16 BAW SWITCH
261 PTO€ EOU 	PTOr..+16+FTDV 1/0 BUFFER POINTER (DOUBLE-BYTE)
262 *-
262 *
264 * *** ENTRIES TO DDT AND INTERRUPT VECTOR 5105.13 BE PATCHED
265 * *** TO SOOS 33.8 DATA BASE WHEN DRIVER 15 PERGED INTO SDOS.
266 *
2E7 ***************************
268 *
269 * DEFINE THE HEFT DDT *
278 *
271 ***************************
272 *
277 *
274 *

_ 	 211~ EQU 	 H'2436' 1ST 'DRAW ENTRY (ThREE-BYTE)
3 	 276 * 	ORG 	DHAN+PTDV+RTN+PTDV

277 * 	BCTA,UN 	HPTH 	ADD)FER VECTOR FOR HSPT HANDLEK
	__278*

279 *
288 *
281 DTST EPU 	4'2416 	1ST 'DTST' ENTRY
282 * 	ORG 	DTST+PTDV HSPT DEVICE AVA1LABILITY
283 * 	DATA 	H'8 	SET HSPT UP AND NOWSHARIABLE
284 *
285
2.&",
287 DTTF EDU 	H-'2426 	1ST 'DTTP' ENTRY

	

-288 * 	ERG 	-DTTP+PTDVHSPT -DEVICE-IIITTYPE
289 * 	DATA 	1 	SET 'READ ORLY' IN TABLE
298 *
291 *
292 *
293 OTID EQU 	H'2486' 1ST 'DTID' ENTRY
294 * 	ORG 	DTID+PTDV HSPT DEVICE ID
295 * 	DATA 	PTDV+1 	SET DEVICE ID
296 * 	
297 *
298 *
299 DTNM EQU 	H'2466- 1ST 'DTNM' ENTRY (FOUR -BYTE)
388 * 	ORG 	DT144+PTDV+PTDV+PTDV4PTDV

Figure H-1. Adding a Driver to SDOS Sample (Continued)

H- 7

381 * 	DATA 	1,14/5PT' AM) DEVICE NAME
382*
383 *

I 	394 *
385 /1,71~~1de*****~~4.1.1,71.71~7******111*

386 *
387 * ADD THE HSPT IINERRLPT VECTOR *
»8 *
389 **************4****~************
319 *
311 * 	ORG 	H'1996'
312 * 	 RDD VECTOR TO VECTOR AREA
313 * 	 IN AN AVAILABLE SLOT
314 *

10 	315 *~**********************~****
316

7 	317 * H111,/ SPEED PFFER TRPE READER *
318 * -INTER/UT -SERVICE ROUT11€ *
319 *

15 i
1 	320 **************~4~*********

322 *
323 	ORG 	H '1E89 	ORG INTO AVAILABLE MEMORY AREA
324
325 *

Body of Driver Logic

Figure H-1. Adding a Driver to SDOS Sample (Continued)

H - 8

APPENDIX I
RS232 DR IVER DESCRIPTION

The general purpose I/O board has an RS-232-C type interface. The UART, along
with the control signals, represent the DTE (Data Terminal Equipment) in the
EIA standard. The device two status byte sends the required signals to the
DTE from the DCE (Data Communications Equipment). The interface includes the
following signals:

From DTE 	 From DCE

ON/OFF LINE
	

RING INDICATOR
ORIGINATE/ANSWER
	

CARRIER DETECT
SEND RESTRAINT
	

DATA SET READY
DATA TERMINAL READY
	

CLEAR TO SEND
REQUEST TO SEND

These signals allow DCE to be attached to the DTE and make communication be-
tween remote sites and the TWIN system possible. The software to support the
RS-232-C interface is written to allow operation with or without data communi-
cation equipment attached.

The RS232 device is named R232 and is a non-shareable read/write device which
supports half-duplex mode. It behaves externally as any device in the system,
that is, a device handler is included along with interrupt service routines.

ALLOWABLE SVCs

The allowable SVCs are the following:

FUNCTION
HEX
CODE

01 	Read ASCII
02 	Write ASCII
03 	Close Channel
04 	Rewind
10 	Assign R232 To Channel
21 	Read Status of Control Ports
41 	Read Binary
42 	Write Binary

CONTROL PORTS

The RS232 interface has one data port for data input and output and two con-
trol ports. Control is set by outputting to control port 1. Status is read
by inputting on control ports 1 and 2. Refer to figures I-1 through 1-3 for
port bit assignments.

I-1

0 3 2 5 4 7 6

t t

TTY READER ON = 1

PARITY (1 = EVEN, 0 = ODD)

DEVICE INTERRUPT ENABLE = 1

LOCAL MODE = 1

AUTOMATIC MODE (1 = ANSWER,
0 = ORIGINATE

SEND RESTRAINT = 1

DATA TERMINAL READY = 1

REQUEST TO SEND

Figure 1-1. RS232 Control Port 1 (Output)

1-2

NOT USED = 1

RING INDICATOR

CARRIER DETECT

DATA SET READY

CLEAR TO SEND

1 0 3 2 7 5 4 6

7
	

6
	

5
	

4
	 1 	0

•........~-T--.~..../
	

h
	

t
	

DATA AVAILABLE

TRANSMIT BUFFER EMPTY

DATA OVERRUN

FRAMING ERROR

PARITY ERROR

NOT USED = 1

Figure 1-2. RS232 Control Port 1 (Input)

Figure 1-3. RS232 Control Port 2 (Input Only)

1-3

NORMAL USAGE

The RS232 device control port takes on the bit assignments as described below
for the allowable SVCs. In this mode, the device name R232 may be used as a
system device by any of the SDOS commands. Figure I-1 shows the control bit
definitions. The bit assignments under normal usage are specified below for
each allowable SVC.

NO TE

The RS232 driver must use the memory space
provided in SDOS for an optional driver.
Only one optional driver can be configured
into the system due to memory limitations.

Assign

Control is set to DATA TERMINAL READY, ANSWER, DEVICE INTERRUPTS ENABLED and
EVEN PARITY. Once a job has successfully assigned a channel to the device,
that job is assured of exclusive use of the device and may issue Read or Write
SVC's over the channel.

Read

Control is set to DATA TERMINAL READY, DEVICE INTERRUPTS ENABLED and EVEN
PARITY.

Write

Control is set to REQUEST TO SEND, DATA TERMINAL READY, DEVICE INTERRUPTS EN-
ABLED, and EVEN PARITY. For a Write request, control port 2 is read and the
handler delays until the status read from control port 2 signals CLEAR TO
SEND. If CLEAR TO SEND is not true and the time-out loop is exceeded, I/O is
set complete and the status in the SRB is 'DEVICE NOT OPERATIONAL'.

Close

When the channel is closed, either by a Close SVC or by an Abort, the control
is set to LOCAL MODE and EVEN PARITY.

Rewi nd

Control is set as for Assign.

1-4

USER'SELECTABLE CONTROL

If you wish to use control assignments other than those defined previously, it
is possible to do so by using a Read Status SVC, function code 21H. Prior
to any I/O request, issue an SVC 21H with the desired control byte defini-
tion loaded into the BMAX byte of the SRB.

SRB USAGE

Upon completion of the Read or Write SVC, SDAT in the user's SRB contains the
status of control port 1. The status of control port 2 is placed in SDAT the
user's SRB upon the completion of an Assign, Close or Rewind SVC.

Upon return from a Read Status SVC, BCNT contains control port one status and
SDAT contains control port 2 status. See Figure 1-4 for a diagram of the SRB
for Read Status SVC.

1-5

SFC
21H

SC H
Channel assigned to RS232

STAT
Should be zero if driver received control

SDAT
Status of control port 2 returned

BCNT
Status of control port 1 returned

BMAX
Output control bit settings

BPTR

N/A

Figure 1-4. SRB Usage for Read Status SVC (21H)

I -6

GENERAL DESCRIPTION

At assign time, the terminal is set to on-line and ready. The next request
can be either a Read, Write or Close. For a Read request, the Answer mode is
set. The DCE is now in a state where the presence of a ring indicator will
cause it to take the necessary action (go off hook and establish connection
with the communication channel). Whén this action is complete, the data set
ready line will be set. The DCE will keep the received data line to the UART
in a marking condition until data set ready is true, i.e., no data is sent
across the DCE to the DTE unless both data set ready and data terminal ready
are true. When the UART has received a character, the data available goes
true causing an interrupt. At this time, error conditions (parity, framing,
and data overrun) are valid. The interrupt handler has one full character
time to process the data.

The interrupt service routine reads the character and tests for I/O complete,
then I/O complete sets the device ready. Interrupts received with the device
ready are ignored. If the line protocol is such that the sending station can
continue transmission without first receiving an acknowledge, it is likely
that messages will be lost. Also system commands, such as COPY, which utilize
this device will most likely encounter errors when the device is actually con-
nected to a remote station.

For a Write request, the DTE sets the On-line, Originate and Request to Send
lines. The Request to Send causes the DCE to set the Clear to Send line when
it is ready to transmit. The DTE will not transmit data until the Clear to
Send line goes high. This is one instance where a time out function through
the system clock is useful. 	In the present implementation, the handler will
test the Clear to Send line a number of times before returning status of
"device not ready". The program issuing the SVC is responsible for determin-
ing whether to try again or abort. When Clear to Send goes high, the handler
will output one byte of data. When the transmit buffer empty goes true an
interrupt will be generated. The interrupt handler will process the interrupt
and either set I/O complete or continue to transmit. When I/O is complete the
Request to Send line will become low. When the channel is closed, the data
terminal ready line is set low and the device is set off-line.

1-7

0
C

0

0
0

COMMENT SHEET

TITLE:

REVISION:

This form is not intended to be used as an order blank. Signetics Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

CU
T
 ON

 T
HI

S
LI

NE

General comments:

	

FROM NAME• 	 POSITION 	

COMPANY

	

NAME • 	

	

ADDRESS: 	

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE
	 STAPLE

FOLD
	 FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY 1F MAI LE D IN U.S.A.

POSTAGE WILL BE PAID BY

SlijillltiCS
a subsidiary of U.S. Philips Corporation

Signetics Corporation
P.O. Box 9052

811 East Arques Avenue
Sunnyvale, California 94086

Bin No. 038 MOS Microprocessor Division

FIRST CLASS
PERMIT NO. 166

SUNNYVALE, CALIF.

FOLD
	 FOLD

STAPLE 	 STAPLE

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92

